RESEARCH PAPER
A Complex Neural Network Model for Predicting a Personal Success based on their Activity in Social Networks
 
More details
Hide details
1
Kazan (Volga region) Federal University, 420008, Kremlevskaya 18, Kazan, RUSSIA
 
2
I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Trubetskaya Street 8, Moscow, RUSSIA
 
3
Financial University under the Government of the Russian Federation, 125993, Leningradsky Prospect 49, Moscow, RUSSIA
 
 
Publication date: 2021-08-24
 
 
EURASIA J. Math., Sci Tech. Ed 2021;17(10):em2010
 
KEYWORDS
ABSTRACT
The development and improvement of effective tools for predicting human behavior in real life through the features of its virtual activity opens up broad prospects for psychological support of the individual. The presence of such tools can be used by psychologists in educational, professional and other areas in the formation of trajectories of harmonious person’s development. Currently, active research is underway to determine psychological characteristics based on publicly available data. Such studies develop the direction of “Psychology of social networks”. As markers for determining the psychological characteristics of people, various parameters obtained from their personal pages in social networks are used (texts of posts and reposts, the number of different elements on the page, statistical information about audio and video recordings, information about groups, and others). There is a difficulty in obtaining and analyzing a data set this big, as there are non-linear and hidden relationships between individual data elements. As a result, the classic methods of information processing become inefficient. Therefore, in our work to develop a comprehensive model of success based on the analysis of qualitative and quantitative data, we use an approach based on artificial neural networks. The labels of the input records are used to divide the subjects of the study into five clusters using clustering methods (k-means). In the course of our work, we gradually expand the set of input parameters to include metrics of users’ personal pages, and compare the results to determine the impact of qualitative parameters on the accuracy of the artificial neural network. The results reflect the solution of one of the tasks of the research carried out within the framework of the project of the Russian Science Foundation and serve as material for an information and analytical system for automatic forecasting of human life activity based on the metrics of his personal profile in the social network VKontakte.
REFERENCES (36)
1.
Arunkrishna, M., & Mukunthan, B. (2020). A multi-classifier approach for twitter spam detection using innovative ann-fdt algorithm. Indian Journal of Computer Science and Engineering, 11(5), 547–556. https://doi.org/10.21817/indjc....
 
2.
Balakrishnan, M., & Geetha, T. V. (2020). A neural network framework for predicting dynamic variations in heterogeneous social networks. PLoS ONE, 15(4), e0231842. https://doi.org/10.1371/journa....
 
3.
DiFranco, G., & Santurro, M. (2020). Machine learning, artificial neural networks and social research. Quality and Quantity. https://doi.org/10.1007/s11135....
 
4.
Du, L., Wang, Y., Song, G., Lu, Z., & Wang, J. (2018). Dynamic network embedding: An extended approach for skip-gram based network embedding. IJCAI International Joint Conference on Artificial Intelligence. https://doi.org/10.24963/ijcai....
 
5.
Fawcett, T (2005). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874. https://doi.org/10.1016/j.patr....
 
6.
Galchenko, N. A., Shatskaya, I. I., Makarova, E. V., Kulesh, E. V., Nizamutdinova, S. M., Yudina, A. M., & Skutelnik, O. A. (2020). Student hood spiritual needs in self-isolation period: Features and ways to meet them. EurAsian Journal of BioSciences, 14(1), 2229-2234.
 
7.
Gimaliev, V. G., Prokopyev, A. I., Vershinin, V. P., Ivanova, M. E., Erkibaeva, G. G., Aytuganova, J. I., & Alexandrova N. S. (2020). Public relations in organizations in student view: Accumulator of management tools or formation of partnership and friendly relations. Journal of Environmental Treatment Techniques, 8(4), 1326-1330. https://doi.org/10.47277/JETT/....
 
8.
Hiranyachattada, T., & Kusirirat, K. (2020). The effect of social media and lecturer’s direct instruction on students’ digital sculpting skills. European Journal of Science and Mathematics Education, 8(4), 163-169. https://doi.org/10.30935/scima....
 
9.
Jabłońska, M. R., & Zajdel, R. (2020). Artificial neural networks for predicting social comparison effects among female Instagram users. PLoS ONE, 15(2), e0229354. https://doi.org/10.1371/journa....
 
10.
Khan, S. A., & Chang, H. T. (2019). Comparative analysis on Facebook post interaction using DNN, ELM and LSTM. PLoS ONE, 14(11), e0224452. https://doi.org/10.1371/journa....
 
11.
Khandelwal, P., & Gotlieb, M. R. (2021). The Role of Perceived Utilitarian and Hedonic Value in Predicting Use of Location-Based Anonymous Social Networking Sites. Online Journal of Communication and Media Technologies, 11(4), e202118. https://doi.org/10.30935/ojcmt....
 
12.
Kumar, A., & Sachdeva, N. (2019). Cyberbullying detection on social multimedia using soft computing techniques: a meta-analysis. Multimedia Tools and Applications, 78(17), 23973–24010. https://doi.org/10.1007/s11042....
 
13.
Kumar, A., & Sachdeva, N. (2021). Multimodal cyberbullying detection using capsule network with dynamic routing and deep convolutional neural network. Multimedia Systems. https://doi.org/10.1007/s00530....
 
14.
Levina, I. D., Ukolova, L. I., Lavrentyeva, E. Y., Akhilgova, M. T., Zharikov, Y. S., Popova, O. V., Semyanov, E. V., Malanov, I. A., Muskhanova, I. V., Magomeddibirova, Z. A., Bazaeva, F. U., & Isaeva M. A. (2019). Nursing home conditions for elderly people and its peculiarities of their adaptation. EurAsian Journal of BioSciences, 13(2), 1549-1555.
 
15.
Minakhmetova, A. Z., Skutelnik, O. A., Fedorchuk, Y. M., Shulga, T. I., Pavlushin, A. A., & Shagiev, B. V. (2017). Motivational and valuable orientation of teachers as a condition to form students’ tolerant behavior. Man in India, 97(3), 323-332.
 
16.
Miroshnichenko, A. A., & Merzlyakova, D. R. (2019). Pedagogy of national technological initiative: perspectives and risks for educational system (the example of safenet market). Vestnik NCBŽD, 3(41), 50-53.
 
17.
Mukhametshin, R. Z., Kryukova, N. I., Beloborodova, A. V., Grinenko, A. V., & Popova, O. V. (2019). Implementation of efficient energy policy in Russia: Energy consumption monitoring and problem analysis. International Journal of Energy Economics and Policy, 9(4), 224-232. https://doi.org/10.32479/ijeep....
 
18.
Ophir, Y., Tikochinski, R., Asterhan, C. S. C., Sisso, I., & Reichart, R. (2020). Deep neural networks detect suicide risk from textual facebook posts. Scientific Reports, 10(1), 65-83. https://doi.org/10.1038/s41598....
 
19.
Orekhovskaya, N. A., Chistyakov, A. A., Kryukova, N. I., Krokhina, J. A., Ospennikov, Y. V., & Makarova, E. V. (2019). Orthodoxy and modernity their contact facets in Russian society. European Journal of Science and Theology, 15(2), 67-77.
 
20.
Owan, V. J., Ekpe, M. B., & Eneje, S. (2020). Undergraduates’ utilization of social networking media and sexual behaviours in higher education: A case study. Pedagogical Research, 5(2), em0062. https://doi.org/10.29333/pr/79....
 
21.
Piralova, O. F., Gerasimenko, S. A., Kuznetsov, V. V., Popova, O. V., Subbotin, G. V., Kolomyts, O. G., & Mashkin, N. A. (2020). Gaming Industry Trends in new Generation​ Specialist Training in University Environment. Journal of Environmental Treatment Techniques, 8(3), 1132-1135.
 
22.
Ptaszynski, M., Dybala, P., Matsuba, T., Masui, F., Rzepka, R., Araki, K., & Momouchi, Y. (2010). In the service of online order: Tackling cyberbulling with machine learning and affect analysis. International Journal of Computational Linguistics Research, 1, 135-154.
 
23.
Razumovskaya, M. I., Larionova, A. A., Zaitseva, N. A., Petrina, O. A, Vinogradova, M. V., Nagay, N. G., & Takhumova, O. V. (2019). Models of integrated interactions organization in the field of environmental education. Journal of Environmental Treatment Techniques, 7(4), 576-580.
 
24.
Razumovskaya, M., Zaitseva, N. A., Larionova, A. A., Chudnovskiy, A. D., & Breusova, E. A. (2018). Prospects for applying various forms of organizational integration to improve the quality of education. Astra Salvensis, 6, 348-362.
 
25.
Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. Computer Science, arXiv 1804.02767.
 
26.
Rubio, G. L., Leskova, A., Prokopyev, A. I., Miroshkin, D. V., & Kamneva, E. V. (2020). Despair or the loss of selfhood in Kierkegaard’s sickness unto death. XLinguae, 13(3), 63-77. https://doi.org/10.18355/XL.20....
 
27.
Shatte, A. B. R., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: A scoping review of methods and applications. Psychological Medicine, 49(9), 1426-1448. https://doi.org/10.1017/S00332....
 
28.
Shrivastava, M., & Kumar, S. (2021). A pragmatic and intelligent model for sarcasm detection in social media text. Technology in Society, 1, 64-75. https://doi.org/10.1016/j.tech....
 
29.
Tan, Q., Liu, N., & Hu, X. (2019). Deep representation learning for social network analysis. ArXiv, 2. https://doi.org/10.3389/fdata.....
 
30.
Tugun, V., Bayanova, A. R., Erdyneeva, K. G., Mashkin N. A., Sakhipova, Z. M., & Zasova, L. V. (2020). The opinions of technology supported education of university students. International Journal of Emerging Technologies in Learning, 15(23), 4-14. https://doi.org/10.3991/ijet.v....
 
31.
Vakhitov, G., Enikeeva, Z., Yangirova, N., Shavalieva, A., & Ustin, P. (2019). Identification of the clusters of social network communities for users with a specific characteristic. Proceedings - International Conference on Developments in ESystems Engineering, DeSE, 140–146. https://doi.org/10.1109/DeS-E.....
 
32.
Yang, C., Sun, M., Zhao, W. X., Liu, Z., & Chang, E. Y. (2017). A neural network approach to jointly modeling social networks and mobile trajectories. ACM Transactions on Information Systems, 35(4), 1-28. https://doi.org/10.1145/304165....
 
33.
Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational Intelligence Magazine, 13(3), 55-75. https://doi.org/10.1109/MCI.20....
 
34.
Yusupov, F. R. (2019). Use of modern technologies and information systems in the process of training of employess of internal affairs institutions. Vestnik NCBŽD, 2(40), 57-61.
 
35.
Zharko, L. N. (2020). Case-study as an innovative pedagogical technology in teaching activities of lecturer of additional professional education. Vestnik NCBŽD, 2(44), 49-56.
 
36.
Zheng, L., Wang, O., Hao, S., Ye, C., Liu, M., Xia, M., Sabo, A. N., Markovic, L., Stearns, F., Kanov, L., Sylvester, K. G., Widen, E., McElhinney, D. B., Zhang, W., Liao, J., & Ling, X. B. (2020). Development of an early-warning system for high-risk patients for suicide attempt using deep learning and electronic health records. Translational Psychiatry, 10(1). https://doi.org/10.1038/s41398....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top