RESEARCH PAPER
A Study of Pre-service Primary Teachers’ Discourse when Solving Didactic-Mathematical Tasks
 
More details
Hide details
1
Departamento de Didáctica de las Matemáticas, Universidad de Sevilla, SPAIN
 
 
Online publication date: 2019-05-09
 
 
Publication date: 2019-05-09
 
 
EURASIA J. Math., Sci Tech. Ed 2019;15(11):em1762
 
KEYWORDS
TOPICS
ABSTRACT
From a commognitive approach, this article focuses on the discourse generated by pre-service primary teachers who are solving didactic-mathematical tasks. Our aims are to study the characteristics of the aforementioned discourse and, through these characteristics, identify whether a discourse close to the one of primary teachers is beginning to emerge. The sources of data were audio-recordings of group discussions and group reports. Two different discourses were identified in our results. One is the discourse generated by pre-service teachers when adopt the role of students of any level who have to solve a task proposed in the classroom. The other discourse is linked to the adoption of a role close to their future professional work. If we consider that the acquisition of a specific discourse enables future teachers to integrate into the community of practice of primary teachers, the role of the different discourses becomes a relevant element in teacher education.
REFERENCES (38)
1.
Brown, J., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42. https://doi.org/10.3102/001318....
 
2.
Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in Geometry. Journal for Research in Mathematics Education, 17(1), 31–48. https://doi.org/10.2307/749317.
 
3.
Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51–52, 45–65. https://doi.org/10.1016/j.ijer....
 
4.
Collins, A., Brown, J., & Newman, S. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453–494). Hillsdale, NJ: Lawrence Erlbaum Associates.
 
5.
Erath, K., Prediger, S., Quasthoff, U., & Heller, V. (2018). Discourse competence as important part of academic language proficiency in mathematics classrooms: The case of explaining to learn and learning to explain. Educational Studies in Mathematics, 99(2), 161–179. https://doi.org/10.1007/s10649....
 
6.
Figueiras, L. (2013). ¿Por qué no empezar a formular buenas preguntas? [Why not begin asking good questions?]. Cuadernos de Pedagogía, 438(1), 55–59.
 
7.
García, M, & Sánchez, V. (2002). Una propuesta de formación de maestros desde la educación matemática: Adoptando una perspectiva situada [A proposal for teacher training from mathematics education: Adopting a situated perspective]. In L. C. Contreras, & L. J. Blanco (Coor.), Aportaciones a la formación inicial de maestros en el área de matemáticas: Una mirada a la práctica docente (pp. 59–88). Badajoz: Universidad de Extremadura. Servicio de Publicaciones.
 
8.
García, M., Sánchez, V., & Escudero, I. (2007). Learning through reflection in mathematics teacher education. Educational Studies in Mathematics, 64(1), 1–17. https://doi.org/10.1007/s10649....
 
9.
Gee, J. P. (1996). Social linguistics and literacies: Ideology in discourses. New York, NY: Routledge Falmer.
 
10.
Gee, J. P. (2001). Reading as situated language: A sociocognitive perspective. Journal of Adolescent & Adult Literacy, 44(8), 714–725. Retrieved from https://www.jstor.org/stable/4....
 
11.
Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New York, NY: Aldine.
 
12.
Gresalfi, M. S., & Cobb, P. (2011). Negotiating identities for mathematics teaching in the context of professional development. Journal for Research in Mathematics Education, 42(3), 270–304. https://doi.org/10.5951/jresem....
 
13.
Gutiérrez, A., & Jaime, A. (1998). On the assessment of the van Hiele levels of reasoning. Focus on Learning Problems in Mathematics, 20(2–3), 27–46.
 
14.
Hoffer, A. (1981). Geometry is more than proof. Mathematics Teacher, 74(1), 11–18. Retrieved from https://www.jstor.org/stable/2....
 
15.
Hunter, R. K., & Anthony, G. (2011). Forging mathematical relationships in inquiry-based classrooms with Pasifika students. Journal of Urban Mathematics Education, 4(1), 98–119.
 
16.
Ivars, P., Fernández, C., Llinares, S., & Choy, B. H. (2018). Enhancing noticing: Using a hypothetical learning trajectory to improve pre-service primary teachers’ professional discourse. EURASIA Journal of Mathematics, Science and Technology Education, 14(11), em1599. https://doi.org/10.29333/ejmst....
 
17.
Jaime, A., & Gutiérrez, A. (1990). Una propuesta de fundamentación para la enseñanza de la geometría: El modelo de van Hiele [A proposal of foundation for teaching geometry: The van Hiele model]. In S. Llinares, & V. Sánchez (Eds.), Teoría y práctica en Educación Matemática (pp. 295–384). Sevilla: Alfar.
 
18.
Lampert, M., Rittenhouse, P., & Crumbaugh, C. (1998). Agreeing to disagree: Developing sociable mathematical discourse. In D. R. Olson, & N. Torrance (Eds.), Handbook of education and human development: New models of learning, teaching and schooling (pp. 731–764). Oxford: Blackwell.
 
19.
Lee, H. J. (2005). Developing a professional development program model based on teachers’ needs. The Professional Educator, 27(1–2), 39–49.
 
20.
Lin, F. L., & Hsu, H. Y. (2018). Using mathematics-pedagogy tasks to facilitate the professional growth of pre-service elementary teachers. In G. J. Stylianides, & K. Hino (Eds.), Research Advances in the Mathematical Education of Pre-service Elementary Teachers: An International Perspective, ICME-13 Monographs (pp. 3–17). Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-....
 
21.
MacKay, T. (2003). Gee’s theory of D/discourse and research in teaching English as a second language: Implications for the mainstream. Retrieved from https://www.umanitoba.ca/facul....
 
22.
Martín-Molina, V., Toscano, R., González-Regaña, A., Fernández-León, A., & Gavilán-Izquierdo, J. M. (2018, July). Analysis of the mathematical discourse of university students when describing and defining geometrical figures. In E. Bergqvist, M. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 355-362). Umeå: PME.
 
23.
Mercer, N. (2004). Sociocultural discourse analysis: Analysing classroom talk as a social mode of thinking. Journal of Applied Linguistics, 1(2), 137–168. https://doi.org/10.1558/japl.v....
 
24.
Moschkovich, J. (2007). Examining mathematical discourse practices. For the Learning of Mathematics, 27(1), 24–30.
 
25.
Nachlieli, T., & Tabach, M. (2012). Growing mathematical objects in the classroom – The case of functions. International Journal of Educational Research, 51–52, 10–27. https://doi.org/10.1016/j.ijer....
 
26.
Ponte, J. P. (2012). Mathematics teacher education programs: Practice and research. Journal of Mathematics Teacher Education, 15(5), 343–346. https://doi.org/10.1007/s10857....
 
27.
Sánchez, V., & García, M. (2014). Socio-mathematical and mathematical norms related to definition in pre-service primary teachers’ discourse. Educational Studies in Mathematics, 85(2), 305-320. https://doi.org/10.1007/s10649....
 
28.
Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46(1–3), 13–57. https://doi.org/10.1023/A:1014....
 
29.
Sfard, A. (2006). Participacionist discourse on mathematics learning. In J. Maasz, & W. Schlöglmann (Eds.), New Mathematics Education Research and Practice (pp. 153–170). Rotterdam: Sense Publishers B. V.
 
30.
Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. The Journal of the Learning Sciences, 16(4), 565–613. https://doi.org/10.1080/105084....
 
31.
Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO978....
 
32.
Tabach, M., & Nachlieli, T. (2015). Classroom engagement towards using definitions for developing mathematical objects: The case of function. Educational Studies in Mathematics, 90(2), 163-187. https://doi.org/10.1007/s10649....
 
33.
Tabach, M., & Nachlieli, T. (2016). Communicational perspectives on learning and teaching mathematics: Prologue. Educational Studies in Mathematics, 91(3), 299–306. https://doi.org/10.1007/s10649....
 
34.
Tatsis, K. (2007, February). Investigating the influence of social and sociomathematical norms in collaborative problem solving. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 1321–1330). Larnaca: University of Cyprus and ERME.
 
35.
Tatsis, K., & Koleza, E. (2008). Social and socio-mathematical norms in collaborative problem-solving. European Journal of Teacher Education, 31(1), 89–100. https://doi.org/10.1080/026197....
 
36.
UK Department for Education. (2013). The National Curriculum in England: Key stages 3 and 4 framework document. Retrieved from https://www.gov.uk/dfe/nationa....
 
37.
US Common Core State Standards Initiative. (2010). Common core state standards for mathematics. Retrieved from http://www.corestandards.org/w....
 
38.
Wenger, E. (1998). Communities of practice: Learning, meaning and identity. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO978....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top