RESEARCH PAPER
Assessing Science Motivation for College Students: Validation of the Science Motivation Questionnaire II using the Rasch-Andrich Rating Scale Model
,
 
,
 
,
 
 
 
More details
Hide details
1
The University of Texas at Austin, Austin, TX, U.S.A.
 
2
University of Central Missouri, Warrensburg, MO, U.S.A.
 
 
Online publication date: 2018-01-05
 
 
Publication date: 2018-01-05
 
 
EURASIA J. Math., Sci Tech. Ed 2018;14(4):1161-1173
 
KEYWORDS
ABSTRACT
Motivation in science learning is believed to be essential for students’ pursuit of college-level studies and lifelong interest in science. Yet, the trend of low levels of motivation in learning science continued in college can be linked to a national concern about low scientific literacy levels and science career aspirations. To diagnose the current status of motivation of college students, it is important to have an instrument that can assess students’ motivation. The purpose of the present study is to examine the level of motivation of college students and establish the validity and reliability of a motivation questionnaire-the Science Motivation Questionnaire II (SMQ II) developed by Glynn et al. (2011)-using the Rasch-Andrich rating scale model. The original instrument consists of 25 items allocated in five sub-factors. Both person separation reliability and item separation reliability were excellent. The item separation index indicated good variability of the items and the five rating scale functioned well. All Infit and Outfit measures in the Rasch analysis demonstrated a lack of unidimensionality of the science motivation construct in the SMQ II, which supports the deletion of two items to satisfy the unidimensional structure.
REFERENCES (53)
1.
American Educational Research Association (AERA), American Psychological Association (APA), & National Council on Measurement in Education (NCME). (2014). Standards for educational and psychological testing. Washington, DC: AERA.
 
2.
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561-573. doi:10.1007/BF02293814.
 
3.
Awuor, R. A. (2008). Effect of unequal sample sizes on the power of DIF detection: An IRT-based Monte Carlo study with SIBTEST and Mantel-Haenszel procedures (Unpublished doctoral dissertation). Virginia Polytechnic Institute and State University. Blacksburg, VA.
 
4.
Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28(2), 117-148. doi:10.1207/s15326985ep2802_3.
 
5.
Bidwell, A. (2013, December 3). American students fall in international academic tests, Chinese lead the pack. Retrieved from http://www.usnews.com/news/art....
 
6.
Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). Mahwah, NJ: L. Erlbaum.
 
7.
Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-6857-4.
 
8.
Bortolotti, S. L. V., Tezza, R., de Andrade, D. F., Bornia, A. C., & de Sousa Júnior, A. F. (2013). Relevance and advantages of using the item response theory. Quality & Quantity, 1-20. doi:10.1007/s11135-012-9684-5.
 
9.
Brinthaupt, T. M., & Kang, M. (2014). Many-facet Rasch calibration: An example using the self-talk scale. Assessment, 21(2), 241-249. doi:10.1177/1073191112446653.
 
10.
Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955-970. doi:10.1002/tea.20249.
 
11.
Bulmer, M. (2004). SAGE benchmarks in social research methods: Questionnaires (Vol. 1-4). London: SAGE Publications Ltd.
 
12.
Chowdhury, M. S., & Shahabuddin, A. M. (2007). Self-efficacy, motivation and their relationship to academic performance of Bangladesh college students. College Quarterly, 10(1), 1-9.
 
13.
Curtin, R., Presser, S., & Singer, E. (2000). The effects of response rate changes on the index of consumer sentiment. Public Opinion Quarterly, 64(4), 413-428. doi:10.1086/318638.
 
14.
Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109-134. doi:10.1016/0092-6566(85)90023-6.
 
15.
Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11, 227-268. doi:10.1207/S15327965PLI1104_01.
 
16.
Dike, D. E. (2012). A descriptive study of intrinsic motivation in three California accredited model continuation high schools (Doctoral dissertation). La Verne, CA: University of La Verne.
 
17.
Eccles, J. S. (2006). A Motivational perspective on school achievement. In R. J. Sternberg & R. F. Subotnik (Eds.), Optimizing student success in school with the other three Rs: Reasoning, resilience, and responsibility (pp. 199-224). Greenwich, Conn: IAP.
 
18.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New York: Psychology Press.
 
19.
Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159-1176. doi:10.1002/tea.20442.
 
20.
Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teaching, 46(2), 127-146. doi:10.1002/tea.20267.
 
21.
Guthrie, J., Wigfield, A., Humenick, N., Perencevich, K., Taboada, A., & Barbosa, P. (2006). Influences of stimulating tasks on reading motivation and comprehension. Journal of Educational Research, 99, 232-245. doi:10.3200/JOER.99.4.232-246.
 
22.
Hackett, G., & Betz, N.E. (1989). An exploration of the mathematics self-efficacy/mathematics performance correspondence. Journal for Research in Mathematics Education, 20, 261–273. doi:10.2307/749515.
 
23.
Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). New York: Guilford Publications.
 
24.
Linacre, J. M. (1998). Detecting multidimensionality: which residual data-type works best? Journal of Outcome Measurement, 2(3), 266-283.
 
25.
Linacre, J. M. (1999). Investigating rating scale category utility. Journal of Outcome Measurement, 3(2), 103-122.
 
26.
Linacre, J. M. (2002). What do infit and outfit, mean-square and standardized mean. Rasch Measurement Transactions, 16(2), 878.
 
27.
Linacre, J. M. (2017). Winsteps Rasch software program (Version 4.0.1). Chicago, IL: Winsteps.com.
 
28.
Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies. Journal of the National Cancer Institute, 22(4), 719-748.
 
29.
McDonald, R. (1999). Test theory: A unified treatment. N.J.: Lawrence Erlbaum Associates.
 
30.
McNamara, T. F. (1996). Measuring second language performance. London: Addison Wesley Longman.
 
31.
Myers, N. D., Wolfe, E. W., Feltz, D. L., & Penfield, R. D. (2006). Identifying differential item functioning of rating scale items with the Rasch model: An introduction and an application. Measurement in Physical Education and Exercise Science, 10(4), 215-240. doi:10.1207/s15327841mpee1004_1.
 
32.
National Research Council (NRC). (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
 
33.
Ormrod, J. E. (2006). Educational Psychology: Developing Learners (5th ed.), glossary. N.J., Merrill: Upper Saddle River.
 
34.
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.
 
35.
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests. Chicago, IL: University of Chicago Press.
 
36.
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. doi:10.1006/ceps.1999.1020.
 
37.
Salta, K., & Koulougliotis, D. (2015). Assessing motivation to learn chemistry: Adaptation and validation of Science Motivation Questionnaire II with Greek secondary school students. Chemistry Education Research and Practice, 16(2), 237-250. doi:10.1039/C4RP00196F.
 
38.
Sheehan, K. B. (2001). E-mail survey response rates: A review. Journal of Computer-Mediated Communication [online], 6(2), 0. doi:10.1111/j.1083-6101.2001.tb00117.x.
 
39.
Shekhar, C., & Devi, R. (2012). Achievement motivation across gender and different academic majors. Journal of Educational and Developmental Psychology, 2(2), 105-109. doi:10.5539/jedp.v2n2p105.
 
40.
Singh, K., Chang, M., & Dika, S. (2005). Affective and motivational factors in engagement and achievement in science. International Journal of Learning, 12(6), 207-218.
 
41.
Trautwein, C., & Stolz, K. (2015). “Press on regardless!”–The role of volitional control in the first year of higher education. Enculturation and Development of Beginning Students, 10(4), 123-143. doi:10.3217/zfhe-10-04/07.
 
42.
Vallerand, R. J., Fortier, M. S., & Guay, F. (1997). Self-determination and persistence in a real-life setting: Toward a motivational model of high school dropout. Journal of Personality and Social psychology, 72(5), 1161. doi:10.1037/0022-3514.72.5.1161.
 
43.
Vedder‐Weiss, D., & Fortus, D. (2011). Adolescents’ declining motivation to learn science: Inevitable or not?. Journal of Research in Science Teaching, 48(2), 199-216. doi:10.1002/tea.20398.
 
44.
Vedder-Weiss, D., & Fortus, D. (2012). Adolescents’ declining motivation to learn science: A follow‐up study. Journal of Research in Science Teaching, 49(9), 1057-1095. doi:10.1002/tea.21049.
 
45.
Vedder‐Weiss, D., & Fortus, D. (2013). School, teacher, peers, and parents’ goals emphases and adolescents’ motivation to learn science in and out of school. Journal of Research in Science Teaching, 50(8), 952-988. doi:10.1002/tea.21103.
 
46.
Walker, C. O., Greene, B. A., & Mansell, R. A. (2006). Identification with academics, intrinsic/extrinsic motivation, and self-efficacy as predictors of cognitive engagement. Learning and individual differences, 16(1), 1-12. doi:10.1016/j.lindif.2005.06.004.
 
47.
Wright, B. D. (1996). Comparing Rasch measurement and factor analysis. Structural equation modeling, 3(1), 3-24. doi:10.1080/10705519609540026.
 
48.
Wright, B. D., & Linacre, M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions. 8(3), 370.
 
49.
Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. Chicago, IL: MESA Press.
 
50.
You, H. S. (2016). Toward interdisciplinary science learning: Development of an assessment for interdisciplinary understanding of ‘carbon cycling’ (Unpublished doctoral dissertation). The University of Texas at Austin, Austin, Texas.
 
51.
Zhu, W. (1996). Should total scores from a rating scale be used directly? Research Quarterly for Exercise and Sport, 67(3), 363-372. doi:10.1080/02701367.1996.10607966.
 
52.
Zhu, W., Timm, G., & Ainsworth, B. (2001). Rasch calibration and optimal categorization of an instrument measuring women’s exercise perseverance and barriers. Research Quarterly for Exercise and Sport, 72, 104–116. doi:10.1080/02701367.2001.10608940.
 
53.
Zwick, R., Thayer, D. T., & Lewis, C. (1999). An empirical Bayes approach to Mantel‐Haenszel DIF analysis. Journal of Educational Measurement, 36(1), 1-28. doi:10.1111/j.1745-3984.1999.tb00543.x.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top