RESEARCH PAPER
From light polarization to quantum physics: Supporting lower secondary school students’ transition from gestalt to functional thinking
 
More details
Hide details
1
Institute of Physics and Astronomy, ELTE Eötvös Loránd University, Budapest, HUNGARY
 
2
Czuczor Gergely Benedictine Secondary School, Győr, HUNGARY
 
3
Physics Education Research Unit, University of Udine, Udine, ITALY
 
4
Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, GERMANY
 
 
Online publication date: 2024-05-07
 
 
Publication date: 2024-06-01
 
 
EURASIA J. Math., Sci Tech. Ed 2024;20(6):em2449
 
KEYWORDS
ABSTRACT
In this paper, we present a new minimal mathematical conceptual approach to quantum mechanics using light polarization for lower secondary school students with the aim of bringing students closer to the so-called quantum mechanical way of thinking. We investigated how students think about some of the basic concepts and fundamental laws and we found that certain concepts are quite well-understandable in younger grades too. We studied the introduction of the so-called state circle, which can faithfully represent quantum mechanical formalism without involving students in abstract algebraic calculations. We then categorized and analyzed students’ thoughts on the superposition principle and the lack of trajectory, finding that the concept of measurement and the lack of trajectory were problematic. We explored that younger students tend to hold gestalt-like mental models of quantum concepts, while at the same time being able to use visualizations correctly for reasoning in the quantum realm. Overall, this paper provides evidence in favor of introducing basic features of quantum mechanics as early as in lower secondary school.
REFERENCES (55)
1.
Ambrose, B. S., Shaffer, P. S., Steinberg, R. N., & McDermott, L. C. (1999). An investigation of student understanding of single-slit diffraction and double-slit interference. American Journal of Physics, 67(2), 146-155. https://doi.org/10.1119/1.1921....
 
2.
Anderson, T., & Shattuck, J. (2012). Design-based research: A decade of progress in education research? Educational Researcher, 41(1) 16-25. https://doi.org/10.3102/001318....
 
3.
Berbhardt, C. (2019). Quantum computing for everyone. MIT Press. https://doi.org/10.7551/mitpre....
 
4.
Bondani, M., Chiofalo, M. L., Ercolessi, E., Macchiavello, C., Malgieri, M., Michelini, M., Mishina, O., Onorato, P., Pallotta, F., Satanassi, S., Stefanel, A., Sutrini, C., Testa, I., & Zuccarini, G. (2022). Introducing quantum technologies at secondary school level: Challenges and potential impact of an online extracurricular course. Physics, 4, 1150-1167. https://doi.org/10.3390/physic....
 
5.
Bouchée, T., de Putter-Smits, L., Thurlings, M., & Pepin, B. (2022). Towards a better understanding of conceptual difficulties in introductory quantum physics courses. Studies in Science Education, 58(2), 183-202. https://doi.org/10.1080/030572....
 
6.
Chiofalo, M. L., Foti, C., Michelini, M., Santi, L., & Stefanel, A. (2022). Games for teaching/learning quantum mechanics: A pilot study with high-school students. Education Sciences, 12(7), 446. https://doi.org/10.3390/educsc....
 
7.
Cobal, M., Corni, F., Michelini, M., Santi, L., & Stefanel, A. (2002a). A resource environment to learn optical polarization. In Proceedings of the GIREP International Conference Proceedings (pp. 5-9).
 
8.
Cobal, M., Michelini, M., & Corni, F. (2002b). Thinking on vectors and formal description of the light polarization for a new educational approach. In M. Michelini, & M. Cobal (Eds.), Developing formal thinking in physics (pp. 310-319). Girep.
 
9.
Dirac, P. A. M. (1958). The principles of quantum mechanics. Clarendon. https://doi.org/10.1063/1.3062....
 
10.
Duit, R., Gropengiesser, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction–A framework for improving teaching and learning science. In D. Jorde, & J. Dillon (Eds.), Science education research and practice in Europe. Sense Publishers. https://doi.org/10.1007/978-94....
 
11.
Faletič, S., Bitzenbauer, P., Bondani, M., Chiofalo, M., Goorney, S., Krijtenburg-Lewerissa, K., Mishina, O., Muller, R., Pospiech, G., Ercan, I., Malgieri, M., Merzel, A., Michelini, M., Onorato, P., Pol, H., Santi, L., Seskir, Z. C., Sherson, J., Stadermann, K., Stefanel, A., Surer, E., Tóth, K., Malo, J. Y., & Zabello, O. (2024). Contributions from pilot projects in quantum technology education as support action to quantum flagship. arXiv. https://doi.org/10.48550/arXiv....
 
12.
Fischler, H. R., & Lichtfeldt, M. (1992). Modern physics and students’ conceptions. International Journal of Science Education, 14(2), 181-190. https://doi.org/10.1080/095006....
 
13.
French, A. P., & Taylor, E. F. (1978). An introduction to quantum physics. Norton.
 
14.
Ghirardi, G. C., Grassi, R., & Michelini, M. (1996). A fundamental concept in quantum theory: The superposition principle in thinking physics for teaching. Plenum Publishing Corporation. https://doi.org/10.1007/978-1-....
 
15.
Greca, I. M., & Freire, O. (2003). Does an emphasis on the concept of quantum states enhance students’ understanding of quantum mechanics? Science & Education, 12(5), 541-557. https://doi.org/10.1023/A:1025....
 
16.
Greinert, F., & Müller, R. (2023). Future quantum workforce: Competences, requirements, and forecasts. Physical Review Physics Education Research, 19, 010137. https://doi.org/10.1103/PhysRe....
 
17.
Hennig, F., Tóth, K., Förster, M., & Bitzenbauer, P. (2024). A new teaching-learning sequence to promote secondary school students’ learning of quantum physics using Dirac notation. Physics Education, 59, 045007. https://doi.org/10.1088/1361-6....
 
18.
Ireson, G. (2000). The quantum understanding of pre-University physics students. Physics Education, 35, 15-21. https://doi.org/10.1088/0031-9....
 
19.
Johnston, I. D., Crawford, K., & Fletcher, P. R. (1998). Student difficulties in learning quantum mechanics. International Journal of Science Education, 20(4), 427-446. https://doi.org/10.1080/095006....
 
20.
Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts. Science Education, 87(2), 257-280. https://doi.org/10.1002/sce.10....
 
21.
Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Physical Review Physics Education Research, 13(1), 010109. https://doi.org/10.1103/PhysRe....
 
22.
Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & van Joolingen, W. R. (2018). Key topics for quantum mechanics at secondary schools: A Delphi study into expert opinions. International Journal of Science Education, 40(3), 349-366. https://doi.org/10.1080/095006....
 
23.
Michelini, M., Santi, L., & Stefanel, A. (2011). Building quantum formalism in upper secondary school students. In Proceedings of the International Conference GIREP-ICPE-MPTL 2010.
 
24.
Michelini, M. (2008). Approaching the theory of quantum mechanics: The first steps towards a coherent synthesized interpretation with a supporting formalism. In Frontiers of physics education (pp. 93-101).
 
25.
Michelini, M., & Stefanel, A. (2006). Hands-on sensors for the exploration of light polarization. In G. Planinsic, & A. Mohoric (Eds.), Informal learning and public understanding of physics (pp. 202-208).
 
26.
Michelini, M., & Stefanel, A. (2014). Proposte didattiche sulla polarizzazione ottica. Percorsi e strumenti per una didattica laboratoriale [Teaching proposals on optical polarization. Paths and tools for laboratory teaching]. Pasian di Prato. https://www.fisica.uniud.it/UR....
 
27.
Michelini, M., & Stefanel, A. (2021). A path to build basic quantum mechanics ideas in the context of light polarization and learning outcomes of secondary students. Journal of Physics: Conference Series, 1929, 012052. https://doi.org/10.1088/1742-6....
 
28.
Michelini, M., & Stefanel, A. (2023). Research studies on learning quantum physics. In M. F. Tasar, & P. R. L. Heron (Eds.), The international handbook of physics education research: Learning physics (pp. 8-34). https://doi.org/10.1063/978073....
 
29.
Michelini, M., Faletič, S., & Pospiech, G. (2022a). Work group 3 position paper: Teacher education and teaching/learning quantum physics. Journal of Physics: Conference Series, 2297, 012015. https://doi.org/10.1088/1742-6....
 
30.
Michelini, M., Pospiech, G., Faletič S., & Stefanel, A. (2021). GIREP Community on teaching/learning quantum physics in secondary school. Journal of Physics: Conference Series, 1929, 012044. https://doi.org/10.1088/1742-6....
 
31.
Michelini, M., Ragazzon, R., Santi, L., & Stefanel, A. (2000). Proposal for quantum physics in secondary school. Physics Education, 35, 406. https://doi.org/10.1088/0031-9....
 
32.
Michelini, M., Stefanel, A., & Tóth, K. (2022b). Implementing Dirac approach to quantum mechanics in a Hungarian secondary school. Education Sciences, 12(9), 606. https://doi.org/10.3390/educsc....
 
33.
Migdał, P., Jankiewicz, K., Grabarz, P., Decaroli, C., & Cochin, P. (2022). Visualizing quantum mechanics in an interactive simulation–Virtual lab by quantum flytrap. Optical Engineering, 61(8), 081808. https://doi.org/10.1117/1.OE.6....
 
34.
Montagnani, S., Stefanel, A., Chiofalo, M. L., Santi, L., & Michelini, M. (2023). An experiential program on the foundations of quantum mechanics for final-year high-school students. Physics Education, 58(3), 035003. https://doi.org/10.1088/1361-6....
 
35.
Müller R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70, 200-209. https://doi.org/10.1119/1.1435....
 
36.
Nobel Prize Outreach AB. (2023). The Nobel Prize in physics 2022. https://www.nobelprize.org/pri....
 
37.
Passante, G., Emigh, P. J., & Shaffer, P. S. (2015). Student ability to distinguish between superposition states and mixed states in quantum mechanics. Physics Education Research, 11(2), 020135. https://doi.org/10.1103/PhysRe....
 
38.
Pospiech, G., Merzel, A., Zuccarini, G., Weissman, E., Katz, N., Galili, I., Santi, L., & Michelini, M. (2021). The role of mathematics in teaching quantum physics at high school. In B. Jarosievitz, & C. Sükösd (Eds.), Teaching-learning contemporary physics: Challenges in physics education. Springer. https://doi.org/10.1007/978-3-....
 
39.
Quantum Technology Education Project. (2020). Quantum technology education project. European Union. https://qtedu.eu/.
 
40.
Schlummer, P., Abazi, A., Borkamp, R., Lauströer, J., Schulz-Schaeffer, R., Schuck, C., Pernice, W., Heusler, S., & Laumann, D. (2023). Seeing the unseen–Enhancing and evaluating undergraduate polarization experiments with interactive mixed-reality technology. European Journal of Physics, 44(6), 065701. https://doi.org/10.1088/1361-6....
 
41.
Singh, C. (2008). Interactive learning tutorials on quantum mechanics. American Journal of Physics, 76(4), 400-405. https://doi.org/10.1119/1.2837....
 
42.
Singh, C., & Marshman, E. (2015). Review of student difficulties in upper-level quantum mechanics. Physics Education Research, 11(2), 020117. https://doi.org/10.1103/PhysRe....
 
43.
Stadermann, K., E., & Goedhart, M. J. (2021). Why and how teachers use the nature of science in teaching quantum physics: Research on the use of an ecological teaching intervention in upper secondary schools. Physics Education Research, 17, 020132. https://doi.org/10.1103/PhysRe....
 
44.
Stefani, C., & Tsaparlis, G. (2009). Students’ levels of explanations, models, and misconceptions in basic quantum chemistry: A phenomenographic study. Journal of Research in Science Teaching, 46(5), 520-536. https://doi.org/10.1002/tea.20....
 
45.
Styer, D. F. (1996). Common misconceptions regarding quantum mechanics. American Journal of Physics, 64(1), 31-34. https://doi.org/10.1119/1.1828....
 
46.
Thacker, B. A. (2003). A study of the nature of students’ models of microscopic processes in the context of modern physics experiments. American Journal of Physics, 71(6), 599-606. https://doi.org/10.1119/1.1566....
 
47.
Tóth, K. (2023). Integrating Dirac approach to quantum mechanics into physics teacher education. AIP Conference Proceedings, 2843, 050011. https://doi.org/10.1063/5.0150....
 
48.
Tóth, K. (2024). Dirac’s approach to quantum mechanics in physics teacher education: From linear to circular polarization. Journal of Physics: Conference Series. https://doi.org/10.1063/5.0150....
 
49.
Tóth, K., & Tél, T. (2023). Quantum uncertainty: What to teach? Physics Education, 58, 025019. https://doi.org/10.1088/1361-6....
 
50.
Tóth, K., Michelini, M., & Bitzenbauer, P. (2024a) Exploring the effect of a phenomenological teaching-learning sequence on lower secondary school students’ views of light polarization. Physics Education, 59, 035009. https://doi.org/10.1088/1361-6....
 
51.
Tóth, K., Michelini, M., & Bitzenbauer, P. (2024b). From light polarization to quantum physics: Supporting lower secondary school students’ transition from gestalt to functional thinking. https://fiztan.phd.elte.hu/let....
 
52.
Ubben, M., & Bitzenbauer, P. (2022). Two cognitive dimensions of students’ mental models in science: Fidelity of gestalt and functional fidelity. Education Sciences, 12, 163. https://doi.org/10.3390/educsc....
 
53.
Ubben, M., & Bitzenbauer, P. (2023). Exploring the relationship between students’ conceptual understanding and model thinking in quantum optics. Frontiers in Quantum Science and Technology, 12. https://doi.org/10.3389/frqst.....
 
54.
Vokos, S., Shaffer, P. S., Ambrose, B. S., & McDermott, L. C. (2000). Student understanding of the wave nature of matter: Diffraction and interference of particles. American Journal of Physics, 68(S1), S42-S51. https://doi.org/10.1119/1.1951....
 
55.
Walsh, J. A., Fenech, M., Tucker, D. L., Riegle-Crumb, C., & Cour, B. R. (2022). Piloting a full-year, optics-based high school course on quantum computing. Physics Education, 57, 025010. https://doi.org/10.1088/1361-6....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top