RESEARCH PAPER
Integrating Artificial Intelligence into Research on Emotions and Behaviors in Science Education
 
More details
Hide details
1
Department of Science, Social Science and Mathematics Education, Faculty of Education, Complutense University of Madrid, Madrid, SPAIN
 
2
Department of Physics and Mathematics, Faculty of Education, University of Alcala, Alcala de Henares, SPAIN
 
3
Institute of Cognitive Neuroscience, University College London, London, UK
 
 
Publication date: 2022-03-26
 
 
EURASIA J. Math., Sci Tech. Ed 2022;18(4):em2099
 
KEYWORDS
ABSTRACT
Most research on emotions and behaviors in science education has used observational or declarative methods. These approaches present certain strengths, but they have important limitations for deepening our understanding of the affective domain. In this work, we develop a method for analyzing the dynamics of affective variables during an inquiry-based activity with an artificial intelligence system that recognizes facial expressions. Although the study was carried out on 12 students, here we analyze data from one person to describe the method in detail. The videos were processed with a software which outputs behavioral and emotional signals. To analyze them, we applied centered moving averages with different widths. This allowed us to align and interpret the dynamics of emotional, behavioral, and learning actions. We found spikes of Surprise when the student seemingly implemented their models, and their predictions were not met. Our analysis suggests the existence of four phases in the inquiry-based activity with specific dynamic profiles. This work lays the foundations for researchers and teachers to develop tools to monitor emotions and behaviors.
REFERENCES (52)
1.
Abbaschian, B. J., Sierra-Sosa, J., & Elmaghraby, A. (2021). Deep learning techniques for speech emotion recognition, from databases to models. Sensors, 21(4), 1249. https://doi.org/10.3390/s21041....
 
2.
Abd-El-Khalick, F., Boujaoude, S. Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H-L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419. https://doi.org/10.1002/sce.10....
 
3.
Adegun, I. P., & Vadapalli, H. B. (2020). Facial micro-expression recognition: A machine learning approach. Scientific African, 8, e00465. https://doi.org/10.1016/j.scia....
 
4.
Artino, A. R., Holmboe, E. S., & Durning, S. J. (2012). Control-value theory: Using achievement emotions to improve understanding of motivation, learning, and performance in medical education: AMEE guide no. 64. Medical Teacher, 34(3), e148-e160. https://doi.org/10.3109/014215....
 
5.
Azari, B., Westlin, C., Satpute, A., Hutchinson, J. B., Kragel, P. A., Hoemann, K., Khan, Z., Wormwood, J. B., Quigley, K. S., Erdogmus, D., Dy, J., Brooks, D. H., & Barrett, L. F. (2020). Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience. Scientific Reports, 10, 20284. https://doi.org/10.1038/s41598....
 
6.
Barrett, L. F., Adolphs, R., Marsella, S., Martinez, A. M., & Pollak, S. D. (2019). Emotional expressions reconsidered: Challenges to inferring emotion from human facial movements. Psychological Science in the Public Interest, 20(1), 1-68. https://doi.org/10.1177/152910....
 
7.
Bellocchi, A. (2019). Early career science teacher experiences of social bonds and emotion management. Journal of Research in Science Teaching, 56(3), 322-347. https://doi.org/10.1002/tea.21....
 
8.
Bellocchi, A., & Ritchie, S. (2015). “I was proud of myself that I didn’t give up and I did it”: Experiences of pride and triumph in learning science. Science Education, 99(4), 638-668. https://doi.org/10.1002/sce.21....
 
9.
Borrachero, A. B., Brígido, M., Mellado, L., Costillo, E., & Mellado, V. (2014). Emotions in prospective secondary teachers when teaching science content, distinguishing by gender. Research in Science & Technological Education, 32(2), 182-215. https://doi.org/10.1080/026351....
 
10.
Chevrier, M., Muis, K. R., Trevors, G. J., Pekrun, R., & Sinatra, G. M. (2019). Exploring the antecedents and consequences of epistemic emotions. Learning and Instruction, 63, 101209. https://doi.org/10.1016/j.lear....
 
11.
Clark, E. A., Kessinger, J., Duncan, S. E., Bell, M. A., Lahne, J., Gallagher, D. L., & O’Keefe, S. F. (2020). The facial action coding system for characterization of human affective response to consumer product-based stimuli: A systematic review. Frontiers in Psychology, 11, 920. https://doi.org/10.3389/fpsyg.....
 
12.
Crujeiras, B., & Jiménez-Aleixandre, M. P. (2019). Students’ progression in monitoring anomalous results obtained in inquiry-based laboratory tasks. Research in Science Education, 49(2), 243-264. https://doi.org/10.1007/s11165....
 
13.
Dávila, M. A., Cañada, F., Sánchez-Martín, J., Airado, D., & Mellado, V. (2021). Emotional performance on physics and chemistry learning: The case of Spanish K-9 and K-10 students. International Journal of Science Education, 43(6), 823-846. https://doi.org/10.1080/095006....
 
14.
de Gelder, B. (2006). Towards the neurobiology of emotional body language. Nature Reviews Neuroscience, 7(3), 242-249. https://doi.org/10.1038/nrn187....
 
15.
Ekman, P. (2003). Emotions revealed: Recognizing faces and feelings to improve communication and emotional life. Henry Holt and Company.
 
16.
Ekman, P., & Friesen, W. V. (1976). Measuring facial movement. Environmental Psychology and Nonverbal Behavior, 1(1), 56-75. https://doi.org/10.1007/BF0111....
 
17.
Ekman, P., & Friesen, W. V. (1978). Facial action coding system: A technique for the measurement of facial movement. Consulting Psychologists Press. https://doi.org/10.1037/t27734....
 
18.
Ezquerra, A., & Ezquerra-Romano, I. (2019). Using neuroscience evidence to train pre-service physics teachers on the concepts of heat and cold. Journal of Physics: Conference Series, 1287, 012038. https://doi.org/10.1088/1742-6....
 
19.
Fredricks, J. A. (2011). Engagement in school and out-of-school contexts: A multidimensional view of engagement. Theory into Practice, 50(4), 327-335. https://doi.org/10.1080/004058....
 
20.
Graesser, A. C. (2020). Emotions are the experiential glue of learning environments in the 21st century. Learning and Instruction, 70, 101212. https://doi.org/10.1016/j.lear....
 
21.
Haber-Schaim, U. et al. (1979). Curso de introducción a las ciencias físicas [Introductory course in physical sciences]. Reverté [Reverted].
 
22.
Harley, J. M., Jarrell, A., & Lajoie, S. P. (2019). Emotion regulation tendencies, achievement emotions, and physiological arousal in a medical diagnostic reasoning simulation. Instructional Science, 47(2), 151-180. https://doi.org/10.1007/s11251....
 
23.
Ihme, K., Unni, A., Zhang, M., Rieger, J. W., & Jipp, M. (2018). Recognizing frustration of drivers from face video recordings and brain activation measurements with functional near-infrared spectroscopy. Frontiers in Human Neuroscience, 12, 327. https://doi.org/10.3389/fnhum.....
 
24.
Inkinen, J., Klager, C., Juuti, K., Schneider, B., Salmela-Aro, K., Krajcik, J., & Lavonen, J. (2020). High school students’ situational engagement associated with scientific practices in designed science learning situations. Science Education, 104(4), 667-692. https://doi.org/10.1002/sce.21....
 
25.
Izard, C. E. (2009). Emotion theory and research: Highlights, unanswered questions, and emerging issues. Annual Review of Psychology, 60, 1-25. https://doi.org/10.1146/annure....
 
26.
Jarodzka, H., Skuballa, I., & Gruber, H. (2021). Eye-tracking in educational practice: Investigating visual perception underlying teaching and learning in the classroom. Educational Psychology Review, 33(1), 1-10. https://doi.org/10.1007/s10648....
 
27.
Jeong, J. S., González-Gómez, D., & Cañada, F. (2016). Students’ perceptions and emotions toward learning in a flipped general science classroom. Journal of Science Education and Technology, 25(5), 747-758. https://doi.org/10.1007/s10956....
 
28.
Jiménez-Liso, M. R., Bellocchi, A., Martínez-Chico, M., & López-Gay, R. (2021a). A model-based inquiry sequence as a heuristic to evaluate students’ emotional, behavioural, and cognitive engagement. Research in Science Education. https://doi.org/10.1007/s11165....
 
29.
Jiménez-Liso, M. R., Martínez-Chico, M., Avraamidou, L., & López-Gay, R. (2021b). Scientific practices in teacher education: The interplay of sense, sensors, and emotions. Research in Science & Technological Education, 39(1), 44-67. https://doi.org/10.1080/026351....
 
30.
Lämsä, J., Hämäläinen, R., Koskinen, P., & Viiri, J. (2018). Visualising the temporal aspects of collaborative inquiry-based learning processes in technology enhanced physics learning. International Journal of Science Education, 40(14), 1697-1717. https://doi.org/10.1080/095006....
 
31.
Laukenmann, M., Bleicher, M., Fuß, S., Gläser-Zikuda, M., Mayring, P., & von Rhöneck, C. (2003). An investigation of the influence of emotional factors on learning in physics instruction. International Journal of Science Education, 25(4), 489-507. https://doi.org/10.1080/095006....
 
32.
Lederman, N., & Abd-El-Khalick, F. (1998). Avoiding de-natured science: Activities that promote understandings of the nature of science. In W. F. McComas (Ed.), The nature of science in science education (pp. 83-126). Springer. https://doi.org/10.1007/0-306-....
 
33.
Loderer, K., Pekrun, R., & Plass J. L. (2019). Affective foundations of game-based learning. In J. L. Plass, E. Richard, R. E. Mayer, & B. D. Homer (Eds.), The handbook of game-based learning (pp. 111-151). MIT Press.
 
34.
Lombardi, D., & Sinatra, G. M. (2013). Emotions about teaching about human-induced climate change. International Journal of Science Education, 35(1), 167-191. https://doi.org/10.1080/095006....
 
35.
Marcos-Merino, J. M. (2019). Análisis de las relaciones emociones-aprendizaje de maestros en formación inicial con una práctica activa de biología [Analysis of the emotions-learning relationships of teachers in initial training with an active practice of biology]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Teaching and Dissemination of Sciences], 16(1), 1603. https://doi.org/10.25267/Rev_E....
 
36.
Marcos-Merino, J. M., Esteban M. R., & Ochoa de Alda, J. A. G. (2021). Conocimiento previo, emociones y aprendizaje en una actividad experimental de ciencias [Prior knowledge, emotions and learning in an experimental science activity]. Enseñanza de las Ciencias [Science Education], 1-18. https://doi.org/10.5565/rev/en....
 
37.
Mellado, V., Borrachero, A. B., Brígido, M., Melo, L. V., Dávila, M. A., Cañada, F., Conde, M. C., Costillo, E., Cubero, J., Esteban, R., Martínez-Borreguero, G., Ruiz, C., Sánchez-Martín, J., Garritz, A., Mellado, L., Vázquez-Bernal, B., Jiménez, R., & Bermejo, M. L. (2014). Las emociones en la enseñanza de las ciencias [Emotions in science teaching]. Enseñanza de las Ciencias [Science Education], 32(3), 11-36. https://doi.org/10.5565/rev/en....
 
38.
Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction–What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496. https://doi.org/10.1002/tea.20....
 
39.
Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2017). Automated detection of engagement using video-based estimation of facial expressions and heart rate. IEEE Transactions on Affective Computing, 8(1), 15-28. https://doi.org/10.1109/TAFFC.....
 
40.
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315-341. https://doi.org/10.1007/s10648....
 
41.
Pekrun, R., & Linnenbrink-Garcia, L. (Eds.). (2014). International handbook of emotions in education. Routledge. https://doi.org/10.4324/978020....
 
42.
Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Child Development, 88(5), 1653-1670. https://doi.org/10.1111/cdev.1....
 
43.
Putwain, D. W., Becker, S., Symes, W., & Pekrun, R. (2018). Reciprocal relations between students’ academic enjoyment, boredom, and achievement over time. Learning and Instruction, 54, 73-81. https://doi.org/10.1016/j.lear....
 
44.
Rodríguez-Arteche, I., & Martínez-Aznar, M. M. (2016). Introducing inquiry-based methodologies during initial secondary education teacher training using an open-ended problem about chemical change. Journal of Chemical Education, 93(9), 1528-1535. https://doi.org/10.1021/acs.jc....
 
45.
Sayette, M. A., Cohn, J. F., Wertz, J. M., Perrott, M. A., & Parrott, D. J. (2001). A psychometric evaluation of the facial action coding system for assessing spontaneous expression. Journal of Nonverbal Behavior, 25(3), 167-185. https://doi.org/10.1023/A:1010....
 
46.
Sinatra, G. M., & Taasoobshirazi, G. (2018). The self-regulation of learning and conceptual change in science: Research, theory, and educational applications. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 153-165). Routledge. https://doi.org/10.4324/978131....
 
47.
Sinatra, G. M., Broughton, S. H., & Lombardi, D. (2014). Emotions in science education. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotions in education (pp. 415-436). Routledge.
 
48.
Todd, R. M., Miskovic, V., Chikazoe, J., & Anderson, A. K. (2020). Emotional objectivity: Neural representations of emotions and their interaction with cognition. Annual Review of Psychology, 71, 25-48. https://doi.org/10.1146/annure....
 
49.
Tóthová, M., & Rusek, M. (2021). The use of eye-tracking in science textbook analysis: A literature review. Scientia in Educatione [Science in Education], 12(1), 1-12. https://doi.org/10.14712/18047....
 
50.
Vaessen, M., Van der Heijden, K., & de Gelder, B. (2019). Decoding of emotion expression in the face, body and voice reveals sensory modality specific representations. bioRxiv, 869578. https://doi.org/10.1101/869578.
 
51.
Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International Journal of Computer Vision, 57(2), 137-154. https://doi.org/10.1023/B:VISI....
 
52.
Wu, C.-L., Lin, T.-J., Chiou, G.-L., Lee, C.-Y., Luan, H., Tsai, M.-J., Potvin, P., & Tsai, C.-C. (2021). A systematic review of MRI neuroimaging for education research. Frontiers in Psychology, 12, 617599. https://doi.org/10.3389/fpsyg.....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top