RESEARCH PAPER
Mathematical Connections Activated in High School Students’ Practice Solving Tasks on the Exponential and Logarithmic Functions
 
More details
Hide details
1
Universidad Autónoma de Guerrero, MEXICO
 
2
Universitat de Barcelona, SPAIN
 
 
Publication date: 2021-08-06
 
 
EURASIA J. Math., Sci Tech. Ed 2021;17(9):em1998
 
KEYWORDS
ABSTRACT
The current paper aims to identify the mathematical connections activated by 10 Mexican high school students while solving mathematical tasks that involve the exponential and logarithmic function. We used the Expanded Mathematical Connections Model (EMCM) and the Onto-Semiotic Approach of Cognition and Mathematical Instruction (OSA) as theoretical frameworks. Task-based interviews were used to collect data that was analyzed using thematic and onto-semiotic analyses. It was found that the connection of reversibility is essential for achieving students’ full understanding of the existent relationship between the exponential and logarithmic function; however, this requires a network of connections.
REFERENCES (34)
1.
Bingölbali, E., & Coşkun, M. (2016). A proposed conceptual framework for enhancing the use of making connections skill in mathematics teaching. Education and Science, 41(183), 233-249. https://doi.org/10.15390/EB.20....
 
2.
Borji V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. Eurasia Journal of Mathematics Science and Technology Education, 14(6), 2301-2315. https://doi.org/10.29333/ejmst....
 
3.
Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper (Ed.), Handbook of research methods in psychology (pp. 57-71). American Psychological Association. https://doi.org/10.1037/13620-....
 
4.
Breda, A., Hummes, V., da Silva, R. S., & Sánchez, A. (2021). El papel de la fase de observación de la implementación en la metodología estudio de clases [The role of the observation phase of implementation in the lesson study methodology]. Bolema, 35(69), 263-288. https://doi.org/10.1590/1980-4....
 
5.
Breda, A., Pino-Fan, L., & Font, V. (2017). Meta didactic-mathematical knowledge of teachers: criteria for the reflection and assessment on teaching practice. Eurasia Journal of Mathematics Science and Technology Education, 13(6), 1893-1918. https://doi.org/10.12973/euras....
 
6.
Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections (Unpublished dissertation), Faculty of Education, Simon Fraser University, Canada.
 
7.
Campo-Meneses, K., & García-García, J. (2020). Explorando las conexiones matemáticas asociadas a la función exponencial y logarítmica en estudiantes universitarios colombianos [Exploring the mathematical connections associated with the exponential and logarithmic function in Colombian university students]. Educación Matemática 32(3), 209-240. http://doi.org/10.24844/EM3203....
 
8.
Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. https://doi.org/10.1007/s13394....
 
9.
Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2013). Mathematical connection and their relationship to mathematics knowledge for teaching geometry. School Science and Mathematics, 113(3), 120-134. https://doi.org/10.1111/ssm.12....
 
10.
Escobar, N. V. (2014). Elementos históricos para la enseñanza de la función logarítmica en la educación básica [Historical elements for the teaching of the logarithmic function in basic education]. Revista Brasileira de História da Matemática, 14(29), 83-115.
 
11.
Ferrari-Escolá, M., Martínez, G., & Méndez-Guevara, M. (2016). “Multiply by adding”: Development of logarithmic-exponential covariational reasoning in high school students. Journal of Mathematical Behavior, 42(2016), 92-108. https://doi.org/10.1016/j.jmat....
 
12.
Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical prac­tices. Educational Studies in Mathematics, 82, 97-124. https://doi.org/10.1007/s10649....
 
13.
García, J. (2018). Conexiones matemáticas y concepciones alternativas asociadas a la derivada y a la integral en estudiantes del preuniversitario [Mathematical connections and alternative conceptions associated with the derivative and the integral in pre-university students] (Unpublished doctoral dissertation), Autonomous University of Guerrero, México.
 
14.
García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/002073....
 
15.
García-García, J., & Dolores-Flores, C. (2021). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33(1), 1–22. https://doi.org/10.1007/s13394....
 
16.
García-García, J., & Dolores-Flores, C. (2020). Exploring pre-university students´ mathematical connections when solving Calculus application problems. International Journal of Mathematical Education in Science and Technology, 1-25. http://doi.org/10.1080/0020739....
 
17.
Generalitat de Catalunya. Currículum Ensenyament Secundària Obligatòria. Àmbit de Matemàtiques [Compulsory Secondary Education Curriculum. Field of Mathematics.]. Decret 187/2015 DOGC núm. 6945 – 28.8.2015.
 
18.
Godino, J. D. Batanero, C. & Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39 (1), 37-42.
 
19.
Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates.
 
20.
Gruver, J. (2018). A trajectory for developing conceptual understanding of logarithmic relationships. Journal of Mathematical Behavior, 50, 1-22. https://doi.org/10.1016/j.jmat....
 
21.
Jaijan, W., & Loipha, S. (2012). Making mathematical connections with transformations using open approach. HRD Journal, 3(1), 91-100.
 
22.
Koestler, C., Felton, M., Bieda, K., & Otten, S., (2013). Connecting the NCTM process standards and the CCSSM practices. National Council of Teacher of Mathematics United States of America.
 
23.
Kuper, E., & Carlson, M. (2020). Foundational ways of thinking for understanding the idea of logarithm. Journal of Mathematical Behavior, 57, 100740, https://doi.org/10.1016/j.jmat....
 
24.
Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive Level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176-191. https://doi.org/10.1080/102884....
 
25.
Moreno, N., Angulo, R., & Reducindo, I. (2018). Mapas conceptuales híbridos para la enseñanza de la física y matemática en el aula [Hybrid concept maps for teaching physics and mathematics in the classroom]. Innovación e Investigación en Matemática Educativa, 3(1), 113-130.
 
26.
MEN. (1998). Lineamientos Curriculares de Matemáticas [Mathematics Curriculum Guidelines]. Ministerio de Educación Nacional.
 
27.
NCTM. (2000). Principles and standards for school mathematics.
 
28.
NCTM. (2013). Connecting the NCTM process standards and the CCSSM practices.
 
29.
Rodríguez-Nieto, C., Rodríguez-Vásquez, F. M., & Font, V. (2020). A new view about connections. The mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 1-26. https://doi.org/10.1080/002073....
 
30.
Rodríguez-Nieto, C., Font, V., Borji, V., & Rodríguez-Vasquez, F. (2021). Mathematical connections from a networking theory between extended theory of Mathematical Connections and Onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 1-27. https://doi.org/10.1080/002073....
 
31.
Rondero, C., & Font, V. (2015) Articulación de la complejidad matemática de la media arit­mética [Articulation of the mathematical complexity of the arithmetic mean]. Enseñanza de las Ciencias, 33(2), 29-49. https://doi.org/10.5565/rev/en....
 
32.
SEP. (2017). Programa de estudios del componente básico del marco curricular común de la educación media superior. Asignatura: Cálculo diferencial [Study program of the basic component of the common curricular framework of upper secondary education. Subject: Differential Calculus]. http://www.sems.gob.mx/work/mo....
 
33.
Sureda, P., & Otero, M. (2013). Estudio sobre el proceso de conceptualización de la función exponencial [Study on the process of conceptualization of the exponential function]. Educación Matemática, 25(2), 89-118.
 
34.
Weber, K. (2002). Students’ understanding of exponential and logarithmic functions. In D. Quinney (Ed.), Proceedings of the 2nd international Conference on the Teaching of Mathematics (pp. 1-7). John Wiley & Sons.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top