RESEARCH PAPER
Optimizing the surface of orthohedra with virtual reality in primary school
 
More details
Hide details
1
Universidad de Almería, Almería, SPAIN
 
2
CEIP Compañía de María, Almería, SPAIN
 
 
Online publication date: 2023-07-31
 
 
Publication date: 2023-09-01
 
 
EURASIA J. Math., Sci Tech. Ed 2023;19(9):em2325
 
KEYWORDS
ABSTRACT
Despite its importance for mathematics, science and technology, the conceptualization and calculation of volumes and surfaces of geometric solids is a source of difficulties, both in primary and secondary school. Immersive virtual reality (IVR) is a powerful resource to overcome these difficulties and promote learning with understanding that enables students to go beyond current curricular contents. This paper presents a design-research study in 6th grade of primary school, comprising three cycles, that allowed schoolchildren aged 11-12 to tackle a final challenge: the optimization of the surface area of orthohedra of a given volume. The design of the cycles, their implementation and the results obtained are described. Reflections are made on the benefits and drawbacks involved in using IVR in the classroom, and on the methodological strategies that enabled the students to successfully overcome the challenge posed.
REFERENCES (34)
1.
Armstrong, M., Dopp, C., & Welsh, J. (2022). Design-based research: What is DBR, why might one do it, and how does one do it well? In R. Kimmons (Ed.), Education research. BYU Open Textbook Network.
 
2.
Battista, M. (2003). Understanding students’ thinking about area and volume measurement. In D. H. Clements, & G. Bright (Eds.), Learning and teaching measurement (pp. 122-142). National Council of Teachers of Mathematics.
 
3.
Battista, M. T., & Clements, D. H. (1996). Students’ understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27, 258-292. https://doi.org/10.2307/749365.
 
4.
Ben-Haim, D., Lappan, G., & Houang, R. T. (1985). Visualizing rectangular solids made of small cubes: Analyzing and affecting students’ performance. Educational Studies in Mathematics, 16(4), 389-409. https://doi.org/10.1007/bf0041....
 
5.
Cangas, D., Morga, G., & Rodríguez, J. L. (2019). Geometry teaching experience in virtual reality with NeoTrie VR. Psychology, Society & Education, 11(3), 355-366. https://ojs.ual.es/ojs/index.p....
 
6.
Carbonell-Carrera, C., & Saorin, J. L. (2017). Virtual learning environments to enhance spatial orientation. EURASIA Journal of Mathematics, Science and Technology Education, 14(3), 709-719. https://doi.org/10.12973/ejmst....
 
7.
Cevikbas, M., Bulut, N., & Kaiser, G. (2023). Exploring the benefits and drawbacks of AR and VR technologies for learners of mathematics: Recent developments. Systems, 11(5), 244. https://doi.org/10.3390/system....
 
8.
Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968-970. https://doi.org/10.1126/scienc....
 
9.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. Journal of the Learning Sciences, 13(1), 15-42. https://doi.org/10.1207/s15327....
 
10.
Demitriadou, E., Stavroulia, K. E., & Lanitis, A. (2020). Comparative evaluation of virtual and augmented reality for teaching mathematics in primary education. Education and Information Technologies, 25, 381-401. https://doi.org/10.1007/s10639....
 
11.
Drickey, N. A. (2000). A comparison of virtual and physical manipulatives in teaching visualization and spatial reasoning to middle school mathematics students [Doctoral dissertation, Utah State University].
 
12.
Fuchs, P., Moreau, G., & Guitton, P. (2011). Introduction to virtual reality. In p. Fuchs, G. Moreau, & P. Guitton (Eds.), Virtual reality: Concepts and technologies (pp. 3-10). CRC Press. https://doi.org/10.1201/b11612....
 
13.
Guss, S. S., Clements, D. H., & Sarama, J. H. (2022). High-quality early math: Learning and teaching with trajectories and technologies. In A. L. Betts, & K. P. Thai (Eds.), Handbook of research on innovative approaches to early childhood development and school readiness (pp. 349-373). IGI Global. https://doi.org/10.4018/978-1-....
 
14.
Kotranza, A., Lind, D. S., Pugh, C. M., & Lok, B. (2009). Real-time in-situ visual feedback of task performance in mixed environments for learning joint psycho-motor-cognitive tasks [Paper presentation]. The 8th IEEE International Symposium on Mixed and Augmented Reality. https://doi.org/10.1109/ISMAR.....
 
15.
Lowrie, T. & Logan, T. (2018). The interaction between spatial reasoning constructs and mathematics understandings in elementary classrooms. In K. S. Mix, & M. T. Battista (Eds.), Visualizing mathematics (pp. 253-276). Springer. https://doi.org/10.1007/978-3-....
 
16.
Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., & González-Marrero, A. (2017). Virtual technologies trends in education. EURASIA Journal of Mathematics, Science and Technology Education, 13(2), 469-486. https://doi.org/10.12973/euras....
 
17.
Moral-Sánchez, S. N., Sánchez-Compaña, M. T., & Romero-Albaladejo, I. (2023). Uso de realidad virtual en Geometría para el desarrollo de habilidades espaciales [Use of virtual reality in Geometry for the development of spatial skills]. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 41(1), 125-147. https://doi.org/10.5565/rev/en....
 
18.
Novak, J. D. (2009). Foreword. In K. Afamasaga-Fuata’i (Ed.), Concept mapping in mathematics: Research into practice. Springer. https://doi.org/10.1007/978-0-....
 
19.
Olmos-Raya, E., Ferreira-Cavalcanti, J., Contero, M., Castellanos, M. C., Giglioli, I. A. C., & Alcañiz, M. (2018). Mobile virtual reality as an educational platform: A pilot study on the impact of immersion and positive emotion induction in the learning process. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2045-2057. https://doi.org/10.29333/ejmst....
 
20.
Pedraz, P. (2017). Warning: Play before gamifying. A la luz de una bombilla. http://www.alaluzdeunabombilla....
 
21.
Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75(2), 191-212. https://doi.org/10.1007/s10649....
 
22.
Pitta-Pantazi, D., & Christou, C. (2010). Spatial versus object visualization: The case of mathematical understanding in three-dimensional arrays of cubes and nets. International Journal of Educational Research, 49(2-3), 102-114. https://doi.org/10.1016/j.ijer....
 
23.
Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning processes: An overview on achievements and challenges. ZDM, 47(6), 877-891. http://doi.org/10.1007/s11858-....
 
24.
Rodríguez, J. L. (2022). Exploring dynamic geometry through immersive virtual reality and distance teaching. In P. R. Richard, M. P. Vélez, & S. Van Vaerenbergh (Eds.), Mathematics education in the age of artificial intelligence. Mathematics education in the digital era (vol 17). Springer, Cham. http://doi.org/10.1007/978-3-0....
 
25.
Rodríguez, J. L., Romero, I., & Codina, A. (2021). The influence of NeoTrie VR’s immersive virtual reality on the teaching and learning of geometry. Mathematics, 9, 2411. https://doi.org/10.3390/math91....
 
26.
Rupnow, T. J., O’Dell, J. R., Barrett, J. E., Cullen, C. J., Clements, D. H., Sarama, J., & Rutherford, G. (2022). Children’s construction of a volume calculation algorithm for a rectangular prism with a dynamic virtual manipulative. The Journal of Mathematical Behavior, 67, 100998. https://doi.org/10.1016/j.jmat....
 
27.
Ryan, J., & Williams, J. (2007). Children’s mathematics 4-15: Learning from errors and misconceptions. Open University Press.
 
28.
Smith, J. P., van den Heuvel-Panhuizen, M., &Teppo, A. (2011). Learning, teaching, and using measurement: Introduction to the issue. ZDM Mathematics Education, 43, 667-820. https://doi.org/10.1007/s11858....
 
29.
Swan, M. (2020). Design research in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 192-195). Springer. https://doi.org/10.1007/978-94....
 
30.
Tan Sisman, G., & Aksu, M. (2016). A study on sixth grade students’ misconceptions and errors in spatial measurement: Length, area, and volume. International Journal of Science and Mathematics Education, 14(7), 1293-1319. https://doi.org/10.1007/s10763....
 
31.
Tang, Y. M., Au, K. M., Lau, H. C. W., Ho, G. T. S., & Wu, C. H. (2020). Evaluating the effectiveness of learning design with mixed reality (MR) in higher education. Virtual Reality, 24, 797-807. https://doi.org/10.1007/s10055....
 
32.
Tumová, V., & Vondrová, N. (2017). Links between success between non-measurement and calculation tasks in area and volume measurement and pupils’ problems. Scientia in Education, 8(2), 100-129. https://doi.org/10.14712/18047....
 
33.
UNESCO. (2011). UNESCO ICT competency framework for teachers. UNESCO. https://unesdoc.unesco.org/ark....
 
34.
Voulgaris, S., & Evangelidou, A. (2004). Volume conception in late primary school children in Cyprus. Quaderni di Ricerca in Didattica [Research Papers in Didactics], 14, 1-31.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top