RESEARCH PAPER
Pre-algebraic aspects in arithmetic strategies – The generalization and conceptual understanding of the ‘Auxiliary Task’
 
More details
Hide details
1
University of Münster, Münster, GERMANY
 
 
Publication date: 2022-11-20
 
 
EURASIA J. Math., Sci Tech. Ed 2022;18(12):em2192
 
KEYWORDS
ABSTRACT
In the last decades, a broad international reform approach was visible in support of mental calculation strategies: Instead of being solely ‘transition strategies’ for learning the standard algorithms, the understanding of numerical relations is essential for mental calculation strategies, making them highly important for a viable understanding of arithmetics. Yet, mental calculation strategies are not only important for understanding arithmetics, but highly relational strategies such as the ‘Auxiliary Task’ might have an important role in the emergence of a pre-algebraic understanding of numerical relations. In this qualitative study from Germany, 4th and 5th grade learners’ (n=18) processes of interpreting the ‘Auxiliary Task’ are examined by conducting linguistic and epistemological analyzes of their conceptual understanding of the ‘Auxiliary Task’ utilizing a design-based research framework. Insights are given into specific, language-related forms of pre-algebraic generalizations of the ‘Auxiliary Task’ as well as into developmental processes within the designed learning-environment.
REFERENCES (47)
1.
Akgun, L., & Ozdemir, M. E. (2006). Students’ understanding of the variable as general number and unknown: A case study. The Teaching of Mathematics, 9(1), 45-52.
 
2.
Akinwunmi, K. (2012). Zur Entwicklung von Variablenkonzepten beim Verallgemeinern mathematischer Muster [Developing concepts of variables when generalizing mathematical patterns]. Springer. https://doi.org/10.1007/978-3-....
 
3.
Bauersfeld, H. (1980). Hidden dimensions in the so-called reality of a mathematics classroom. Educational Studies in Mathematics, 11, 23-41. https://doi.org/10.1007/BF0036....
 
4.
Blöte, A. W., Van der Burg, E., & Klein, A. S. (2001). Students’ flexibility in solving two-digit addition and subtraction problems: Instruction effects. Journal of Educational Psychology, 93, 627-638. https://doi.org/10.1037/0022-0....
 
5.
Britt, M. S., & Irwin, K. C. (2008). Algebraic thinking with and without algebraic representation: A three-year longitudinal study. ZDM, 40, 39-53. https://doi.org/10.1007/s11858....
 
6.
Britt, M. S., & Irwin, K. C. (2011). Algebraic thinking with and without algebraic representation: A pathway for learning. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp. 137-159). Springer. https://doi.org/10.1007/978-3-....
 
7.
Fischbein, E. (1989). Tacit models and mathematical reasoning. For the Learning of Mathematics, 9(2), 9-14.
 
8.
Glade, M., & Prediger, S. (2017). Students’ individual schematization pathways-empirical reconstructions for the case of part-of-part determination for fractions. Educational Studies in Mathematics, 94(2), 185-203. ttps://doi.org/10.1007/s10649-016-9716-5.
 
9.
Hammond, J., & Gibbons, P. (2005). Putting scaffolding to work: The contribution of scaffolding in articulating ESL education. Prospect, 20(1), 6-30.
 
10.
Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59-78. https://doi.org/10.1007/BF0128....
 
11.
Kieran, C. (2011). Overall commentary on early algebraization: Perspectives for research and teaching. In J. Cai, & E. Knuth (Eds.), Early algebraization (pp. 579-593). Springer. https://doi.org/10.1007/978-3-....
 
12.
Kieran, C. (2018). Teaching and learning algebraic thinking with 5- to 12-year-olds. Springer. https://doi.org/10.1007/978-3-....
 
13.
Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra: Research into its nature, its learning, its teaching. Springer. https://doi.org/10.1007/978-3-....
 
14.
Korntreff, S., & Prediger, S. (2022). Students’ ideas about variables as generalizers and unknowns: Design research calling for more explicit comparisons of purposes. In J. Hodgen, & G. Bolondi (Eds.), Proceedings of 12th Congress of the European Society for Research in Mathematics Education (pp. 1-8). ERME.
 
15.
Kunsteller, J. (2018). Developing rules due to the use of family resemblances in classroom communication. In P. Ernest (Ed.), The philosophy of mathematics education today (pp. 365-377). Springer. https://doi.org/10.1007/978-3-....
 
16.
Kuzu, T. (2019). Mehrsprachige Vorstellungsentwicklungsprozesse–Lernprozessstudie zum Anteilskonzept bei deutsch-türkischen Lernenden [Multilingual concept development processes-learning process study on the concept of participation in German-Turkish learners]. Springer. https://doi.org/10.1007/978-3-....
 
17.
Kuzu, T. (2022a). Understanding the ‘Auxiliary Task’ conceptually – Discrete versus continuous cardinal objects. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th PME-Conference (Vol. 3, pp. 99-106). Alicante University Press (PME).
 
18.
Kuzu, T. (2022b). Kreative Denkwege oder umständliches Denken? Einblicke in alternative Vorgehensweisen zur, Hilfsaufgabe’. In Gesellschaft für Didaktik der Mathematik (Eds.), Beiträge zum Mathematikunterricht 2022 (pp. 1-4). WTM. Paper accepted.
 
19.
Kuzu, T., & Nührenbörger, M. (2021). The conceptual understanding of mental calculation strategies: Meaning-making in the case of the ‘Auxiliary task’. In J. Novotná & H. Moraová (Eds.), Proceedings of the International Symposium on Elementary Maths Teaching (pp. 270-280). Charles University, Faculty of Education.
 
20.
Lew, K., Weber, K., & Mejía Ramos, J. P. (2020). Do generic proofs improve proof comprehension? Journal of Educational Research in Mathematics, 30, 229-248. https://doi.org/10.29275/jerm.....
 
21.
Mayer, C. (2019). Zum algebraischen Gleichheitsverständnis von Grundschulkindern. Konstruktive und rekonstruktive Erforschung von Lernchancen [On the algebraic understanding of equality by elementary school children. Constructive and reconstructive exploration of learning opportunities]. Springer. https://doi.org/10.1007/978-3-....
 
22.
Meyer, M. (2009). Abduction, induction–confusion. Notes on the logic of interpretative social research. Zeitschrift für Erziehungswissenschaft [Journal of Educational Science], 12, 302-320. https://doi.org/10.1007/s11618....
 
23.
Nührenbörger, M., & Steinbring, H. (2009). Forms of mathematical interaction in different social settings: Examples from students’, teachers’ and teacher-students’ communication about mathematics. Journal of Mathematics Teacher Education, 12, 111-132. https://doi.org/10.1007/s10857....
 
24.
Pöhler, B., & Prediger, S. (2015). Intertwining lexical and conceptual learning trajectories–A design research study on dual macro-scaffolding towards percentages. EURASIA Journal of Mathematics, 11(6), 1697-1722. https://doi.org/10.12973/euras....
 
25.
Prediger, S. (2019). Theorizing in design research: Methodological reflections on developing and connecting theory elements for language-responsive mathematics classrooms. Avances de Investigación en Educación Matemática [Research Advances in Mathematics Education], 15, 5-27. https://doi.org/10.35763/aiem.....
 
26.
Prediger, S., Clarkson, P., & Bose, A. (2016). Purposefully relating multilingual registers: Building theory and teaching strategies for bilingual learners based on an integration of three traditions. In R. Barwell, P. Clarkson, A. Halai, M. Kazima, J. N. Moschkovich, N. Planas, M. Phakeng, P. Valero, & M. Villavicencio-Ubillús (Eds.), Mathematics education and language diversity (pp. 193-215). Springer. https://doi.org/10.1007/978-3-....
 
27.
Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning processes–an overview on achievements and challenges. ZDM Mathematics Education, 47(6), 877-891. https://doi.org/10.1007/s11858....
 
28.
Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62.
 
29.
Radford, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26, 257-277. https://doi.org/10.1007/s13394....
 
30.
Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 3-27). Springer. https://doi.org/10.1007/978-3-....
 
31.
Rathgeb-Schnierer, E., & Rechtsteiner, C. (2018). Rechnen lernen und Flexibilität entwickeln: Grundlagen–Förderung–Beispiele [Learning arithmetic and developing flexibility: Basics-support-examples]. Springer. https://doi.org/10.1007/978-3-....
 
32.
Schütte, M., Friesen, R. A., & Jung, J. (2019). Interactional analysis: A method for analyzing mathematical learning processes in interactions. In G. Kaiser, & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 101-129). Springer. https://doi.org/10.1007/978-3-....
 
33.
Schwarzkopf, R., Nührenbörger, M., & Mayer, C. (2018). Algebraic understanding of equalities in primary classes. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 195-212). Springer. https://doi.org/10.1007/978-3-....
 
34.
Selter, C., Prediger, S., Nührenbörger, M., & Hußmann, S. (2012). Taking away and determining the difference—a longitudinal perspective on two models of subtraction and the inverse relation to addition. Educational Studies in Mathematics, 79(3), 389-408. https://doi.org/10.1007/s10649....
 
35.
Serrazina, L., & Rodrigues, M. (2021). Number sense and flexibility of calculation: A common focus on number relations. In A. G. Spinillo, S. L. Lautert, & R. E. S. R. Borba (Eds.), Mathematical reasoning of children and adults (pp. 19-40). Springer. https://doi.org/10.1007/978-3-....
 
36.
Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction. An epistemological perspective. Springer.
 
37.
Steinbring, H. (2006). What makes a sign a mathematical sign? An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61, 133-162. https://doi.org/10.1007/s10649....
 
38.
Steinbring, H., & Nührenbörger, M. (2010). Mathematisches Wissen als Gegenstand von Lehr-/Lerninteraktionen. Eigenständige Schülerinteraktionen in Differenz zu Lehrerinterventionen [Mathematical knowledge as a subject of teaching/learning interactions. Independent school interactions in difference to teacher interventions]. In U. Dausendschön-Gay, C. Domke, & S. Ohlhus (Eds.), Wissen in (Inter-)Aktion. Verfahren der Wissensgenerierung in unterschiedlichen Praxisfeldern [Knowledge in (inter)action. Methods of knowledge generation in different fields of practice] (pp. 161-188). De Gruyter.
 
39.
Steinweg, A. S. (2013). Algebra in der Grundschule. Muster und Strukturen–Gleichungen–funktionale Beziehungen [Algebra in elementary school. Patterns and structures–equations–functional relationships]. Springer. https://doi.org/10.1007/978-3-....
 
40.
Steinweg, A. S., Akinwunmi, K., & Lenz, D. (2018). Making implicit algebraic thinking explicit: Exploiting national characteristics of German approaches. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 283-307). Springer. https://doi.org/10.1007/978-3-....
 
41.
Swain, M. (2006). Languaging, agency and collaboration in advanced second language proficiency. In H. Byrnes (Ed.), Advanced language learning (pp. 95-108). Continuum.
 
42.
Threlfall, J. (2002). Flexible mental calculation. Educational Studies in Mathematics, 50, 29-47. https://doi.org/10.1023/A:1020....
 
43.
Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83-94. https://doi.org/10.1159/000202....
 
44.
Warren, E., & Cooper, T. (2008). Generalizing the pattern rule for visual growth patterns: Actions that support 8 year olds’ thinking. Educational Studies in Mathematics, 67, 171-185. https://doi.org/10.1007/s10649....
 
45.
Warren, E., Cooper, T., & Lamb, J. (2006). Investigating functional thinking in the elementary classroom: Foundations of early algebra reasoning. The Journal of Mathematical Behavior, 25(3), 208-223. https://doi.org/10.1016/j.jmat....
 
46.
Wessel, L. (2020). Vocabulary in learning processes towards conceptual understanding of equivalent fractions—specifying students’ language demands on the basis of lexical trace analyses. Mathematics Education Research Journal, 32, 653-681. https://doi.org/10.1007/s13394....
 
47.
Wittmann, E. C. (2021). Connecting mathematics and mathematics education. Collected papers on mathematics education as a design science. Springer. https://doi.org/10.1007/978-3-....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top