RESEARCH PAPER
Prospective secondary school teachers’ knowledge of sampling distribution properties
 
More details
Hide details
1
Department of Mathematics, University of Zaragoza, Zaragoza, SPAIN
 
2
Research Group FQM126, University of Granada, Granada, SPAIN
 
3
Department of Mathematics Education, University of Granada, Granada, SPAIN
 
 
Online publication date: 2023-04-06
 
 
Publication date: 2023-05-01
 
 
EURASIA J. Math., Sci Tech. Ed 2023;19(5):em2265
 
KEYWORDS
ABSTRACT
The aim of the work was to assess prospective Spanish secondary school mathematics teachers’ knowledge of sampling representativeness and variability. To achieve this goal, a questionnaire with four items taken from our previous research with secondary education and high school students was proposed to 66 prospective teachers. In each item, participants were asked to provide four values of a binomial distribution, varying the parameters of the distribution in each item. The analysis of the mean and range of the sample of four values provided by the participants, and its comparison with the theoretically normative and acceptable values of the sampling distribution suggests a good knowledge of the sample representativeness, except for one item and an overestimation of the variability for large values of the number of trials in the binomial distribution. The study of the participants’ arguments serves to identify some reasoning biases related to sampling distribution. The results are better than those obtained with students in our previous studies.
REFERENCES (44)
1.
Alshehri, K. A., & Youssef, N. H. (2022). The influence of mathematical knowledge for teaching towards elementary teachers’ mathematical self-efficacy. EURASIA Journal of Mathematics, Science and Technology Education, 18(6), em2118. https://doi.org/10.29333/ejmst....
 
2.
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/002248....
 
3.
Batanero, C., Begué, N., Borovcnik, M., & Gea, M. (2020). Ways in which high school students understand the sampling distribution for proportions. Statistics Education Research Journal, 19(3), 32-52. https://doi.org/10.52041/serj.....
 
4.
Begué, N., Batanero, C., & Gea, M. M. (2018). Comprensión del valor esperado y variabilidad de la proporción muestral por estudiantes de educación secundaria obligatoria [Understanding the expected value and variability of the sample proportion by compulsory secondary education students]. Enseñanza de las Ciencias, 36(2), 63-79. https://doi.org/10.5565/rev/en....
 
5.
Begué, N., Batanero, C., Ruiz, K., & Gea, M. M. (2019). Understanding sampling: A summary of the research. Boletín de Estadística e Investigación Operativa, 35(1), 49-78.
 
6.
Berkovitz, J. (2015). The propensity interpretation of probability: A re-evaluation. Erkenn, 80(Suppl 3), 629-711. https://doi.org/10.1007/s10670....
 
7.
Briand, J. (2005). Une expérience statistique et une première approche des lois du hasard au lycée par une confrontation avec une machine simple [A statistical experiment and a first approach to the laws of chance in high school through a confrontation with a simple machine]. Recherches en Didactique des Mathématiques [Research in Didactics of Mathematics], 25(2), 247-281.
 
8.
Burrill, G. & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education (pp. 57-69). Springer. https://doi.org/10.1007/978-94....
 
9.
Drisko, J. W., & Maschi, T. (2016). Content analysis. Oxford University Press. https://doi.org/10.1093/acprof....
 
10.
Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff, & B. Sriraman (Eds.), Probabilistic thinking, presenting plural perspectives (pp. 75-99). Springer. https://doi.org/10.1007/978-94....
 
11.
Erbas, A. K., & Ocal, M. F. (2022). Students’ intuitively-based (mis) conceptions in probability and teachers’ awareness of them: the case of heuristics. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/002073....
 
12.
Gauvrit N., & Morsanyi K. (2014). The equiprobability bias from a mathematical and psychological perspective. Advances in Cognitive Psychology, 10(4), 119-130. https://doi.org/10.5709/acp-01....
 
13.
Gómez-Torres, E., Batanero, C., & Díaz, C. (2016). Developing a questionnaire to assess the probability content knowledge of prospective primary school teachers. Statistics Education Research Journal, 15(2), 197-215. https://doi.org/10.52041/serj.....
 
14.
Green, D. R. (1983). A survey of probabilistic concepts in 3000 pupils aged 11-16 years. En D. R. Grey, P. Holmes, V. Barnett, & G. M. Constable (Eds.), Proceedings of the First International Conference on Teaching Statistics (pp. 766-783). Teaching Statistics Trust.
 
15.
Harradine, A., Batanero, C., & Rossman, A. (2011). Students and teachers’ knowledge of sampling and inference. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics. Challenges for teaching and teacher education (235–246). Springer. https://doi.org/10.1007/978-94....
 
16.
Heitele, D. (1975). An epistemological view on fundamental stochastic ideas. Educational Studies in Mathematics, 6, 187-205. https://doi.org/10.1007/BF0030....
 
17.
Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39, 372-400. https://doi.org/10.5951/jresem....
 
18.
Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgement of representativeness. Cognitive Psychology, 3, 430-454. https://doi.org/10.1016/0010-0....
 
19.
Konold, C. (1989). Informal conceptions of probability. Cognition and Instruction, 6(1), 59-98. https://doi.org/10.1207/s15326....
 
20.
Koparan, T. (2022). The impact of a game and simulation-based probability learning environment on the achievement and attitudes of prospective teachers. International Journal of Mathematical Education in Science and Technology, 53(9), 2319-2337. https://doi.org/10.1080/002073....
 
21.
Kula, F., & Kocer, R. G. (2020). Why is it difficult to understand statistical inference? Reflections on the opposing directions of construction and application of inference framework. Teaching Mathematics and its Applications, 39(4), 248-265. https://doi.org/10.1093/teamat....
 
22.
Langer, E. J. (1982). The illusion of control. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristic and biases (pp. 231-238). Cambridge University Press. https://doi.org/10.1037/0022-3....
 
23.
Lecoutre, M. P. (1992). Cognitive models and problem spaces in “purely random” situations. Educational Studies in Mathematics, 23, 557-568. https://doi.org/10.1007/BF0054....
 
24.
Llinares, S. (2018). Mathematics teacher’s knowledge, knowledge-based reasoning, and contexts. Journal of Mathematics Teacher Education, 21(1), 1-3. https://doi.org/10.1007/s10857....
 
25.
Llinares, S. (2021). Instructional quality of mathematics teaching and mathematics teacher education. Journal of Mathematics Teacher Education, 24, 1-3. https://doi.org/10.1007/s10857....
 
26.
López-Martín, M. M, Batanero, C., Díaz-Batanero, C., & Gea, M. M. (2016). La inferencia estadística en las pruebas de acceso a la universidad en Andalucía [Statistical inference in university entrance exams in Andalusia]. Revista Paranaense de Educação Matemática, 5(8), 33-59. https://doi.org/10.33871/22385....
 
27.
López-Martín, M. D. M., Batanero, C., & Gea, M. M. (2019). ¿Conocen los futuros profesores los errores de sus estudiantes en la inferencia estadística? [Do future teachers know the errors of their students in statistical inference?]. Bolema: Boletim de Educação Matemática, 33, 672-693. https://doi.org/10.1590/1980-4....
 
28.
Lugo-Armenta, J. G., & Pino-Fan, L.R. (2021). Inferential statistical reasoning of math teachers: Experiences in virtual contexts generated by the COVID-19 pandemic. Education Sciences, 11, 363. https://doi.org/10.3390/educsc....
 
29.
Makar, K. & Rubin, A. (2018). Learning about statistical inference. In D. Ben-Zvi, K. Makar, & J. B. Garfield (Eds.), International handbook of research in statistics education (pp. 261-294). Springer. https://doi.org/10.1007/978-3-....
 
30.
MEFP. (2022a). Real Decreto 157/2022, de 1 de Marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la educación primaria [Royal Decree 157/2022, of March 1, which establishes the organization and minimum teaching of primary education]. Ministerio de Educación y Formación Profesional [Ministry of Education and Vocational Training].
 
31.
MEFP. (2022b). Real Decreto 217/2022, de 29 de Marzo, por el que se establece la ordenación y las enseñanzas mínimas de la educación secundaria obligatoria [Royal Decree 217/2022, of March 29, which establishes the organization and minimum teaching of compulsory secondary education]. Ministerio de Educación y Formación Profesional [Ministry of Education and Vocational Training].
 
32.
Peirce, C. S. (1932). Notes on the doctrine of chances. In C. S. Peirce (Ed.), Collected papers (pp. 404-414). Harvard University Press.
 
33.
Phelps, G., Howell, H., & Liu, S. (2020). Exploring differences in mathematical knowledge for teaching for prospective and practicing teachers. ZDM-Mathematics Education, 52(2), 255-268. https://doi.org/10.1007/s11858....
 
34.
Ping, C., Schellings, G., & Beijaard, D. (2018). Teacher educators’ professional learning: A literature review. Teaching and Teacher Education, 75, 93-104. https://doi.org/10.1016/j.tate....
 
35.
Saldanha, L., & Thompson, P. (2002). Conceptions of sample and their relationship to statistical inference. Educational Studies in Mathematics, 51(3), 257-270. https://doi.org/10.1023/A:1023....
 
36.
Savard, A. (2010). Simulating the risk without gambling: Can student conceptions generate critical thinking about probability? In C. Reading (Ed.), Proceedings of the 8th International Conference on Teaching Statistics. International Statistical Institute.
 
37.
Scheiner, T., Montes, M. A., Godino, J. D., Carrillo, J., & Pino-Fan, L. R. (2019). What makes mathematics teacher knowledge specialized? Offering alternative views. International Journal of Science and Mathematics Education, 17(1), 153-172. https://doi.org/10.1007/s10763....
 
38.
Shaughnessy, J. M., Ciancetta, M., & Canada, D. (2004). Types of student reasoning on sampling tasks. In M. Johnsen-Høines, & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 177-184). PME.
 
39.
Suárez, M. (2020). Philosophy of probability and statistical modelling. Cambridge University Press. https://doi.org/10.1017/978110....
 
40.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124-1131. https://doi.org/10.1126/scienc....
 
41.
Valenzuela-Ruiz, S., Batanero, C., Begué, N., & Garzón-Guerrero, J. A. (2023). Conocimiento didáctico-matemático sobre la distribución de la media muestral de profesorado de bachillerato en formación [Didactic-mathematical knowledge about the distribution of the sample mean of high school teachers in training]. Uniciencia, 37(1), 1-20. https://doi.org/10.15359/ru.37....
 
42.
Wu, C., & Thompson, M. E. (2020). Sampling theory and practice. Springer. https://doi.org/10.1007/978-3-....
 
43.
Valenzuela-Ruiz, S., Batanero, C., Begué, N. & Garzón-Guerrero, J. A. (2023). Conocimiento didáctico-matemático sobre la distribución de la media muestral de profesorado de bachillerato en formación. Uniciencia, 37(1), 1-20. https://doi.org/10.15359/ru.37....
 
44.
Yarritu, I., Matute, H., & Vadillo, M. A. (2014). Illusion of control: The role of personal involvement. Experimental Psychology, 61(1), 38-47. https://doi.org/10.1027/1618-3....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top