RESEARCH PAPER
Representational Trajectories in the Understanding of Mendelian Genetics
 
More details
Hide details
1
Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, MEXICO
 
 
Publication date: 2021-06-23
 
 
EURASIA J. Math., Sci Tech. Ed 2021;17(8):em1988
 
KEYWORDS
ABSTRACT
Understanding genetics is one of the most significant learning difficulties faced by students. To improve teaching genetics and the students’ representational competence within the classroom have been proposed using multiple representations. This study presents an analysis of representational levels used by high school students learning Mendelian genetics and determining the construction trajectories of these representations. An assessment instrument was used to analyse the representational levels of 186 students with three different teaching strategies. The levels were used to analyse and classify students’ answers, written texts, and drawings and diagrams. The result shows that learning Mendelian genetics is a gradual process in which students appeal to various levels of representations that can determine different trajectories and demonstrate progress on comprehension. We identify five trajectories, ranging from responses that rely on descriptions of observable traits to responses from students who could integrate processes or use models.
REFERENCES (37)
1.
Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualisation: Theory and practice in science education (pp. 191-208). Springer. https://doi.org/10.1007/978-1-....
 
2.
Banet, E., & Ayuso, E. (2000). Teaching genetics at secondary school: A strategy for teaching about the location of inheritance information. Science Education, 84(3), 313-351. https://doi.org/10.1002/(SICI)...<313::AID-SCE2>3.0.CO;2-N.
 
3.
Bresler, F. H., Golan, D. R., & Shea, N. (2011). Exploring middle school students’ understanding of three conceptual models in genetics. International Journal of Science Education, 33(17), 2323-2349. https://doi.org/10.1080/095006....
 
4.
Bruner, S. J. (1990). Acts of meaning. Harvard University Press.
 
5.
Chattopadhyay, A. (2005). Understanding of genetic information in higher secondary students in Northeast India and the implications for genetics education. Cell Biology Education, 4(1), 97-104. https://doi.org/10.1187/cbe.04....
 
6.
diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293-331. https://doi.org/10.1207/s15326....
 
7.
Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understanding of molecular genetics. Journal of Research in Science Teaching, 44(7), 938-959. https://doi.org/10.1002/tea.20....
 
8.
Duncan, R., Castro-Faix, M., & Choi, J. (2016). Informing a learning progression in genetics: Which should be taught first, Mendelian inheritance or the central dogma of molecular biology? International Journal of Science and Mathematics Education, 14(3), 445-472. https://doi.org/10.1007/s10763....
 
9.
Escuela Nacional Preparatoria. (2018). Plan de estudios [Curriculum]. Universidad Nacional Autónoma de México: México. http://dgenp.unam.mx/planesdee....
 
10.
Flores-Camacho, F., García-Rivera, B., Báez-Islas, A., & Gallegos-Cázares, L. (2017). Diseño y validación de un instrumento para analizar las representaciones externas de estudiantes de bachillerato sobre genética [Design and validation of a questionnaire to analyse high school student’s external representations about genetic]. Revista Iberoamericana de Evaluación Educativa, 10(2), 151-169. https://doi.org/10.15366/riee2....
 
11.
Gallegos-Cázares, L. (2015). Una propuesta didáctica para el trabajo en el laboratorio [A didactic proposal for work in the laboratory]. In F. Flores-Camacho (Ed.), Las tecnologías digitales en la enseñanza experimental de la ciencia. Fundamentos cognitivos y procesos (pp. 81-120). Grañén Porrúa.
 
12.
Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science Education, 16(7-8), 849-881. https://doi.org/10.1007/s11191....
 
13.
Gericke, N., & Wahlberg, S. (2013). Clusters of concepts in molecular genetics: A study of Swedish upper secondary science students understanding. Journal of Biological Education, 47(2), 73-83. https://doi.org/10.1080/002192....
 
14.
Gilbert, J. K. (2008). Visualisation: An emergent field of practice and enquire. In J. K. Gilbert., M. Reiner & M. Nakhleh (Eds.), Visualisation: Theory and practice in science education (pp. 3-24). Springer. https://doi.org/10.1007/978-1-....
 
15.
Gilbert, J., Osborne, R., & Fensham, P. (1982). Children’s science and its consequences for teaching. Science Education, 66, 623-633. https://doi.org/10.1002/sce.37....
 
16.
Golan-Duncan, R., Castro-Faix, M., & Choi, J. (2016). Informing a learning progression in genetics: Which should be taught first: Mendelian inheritance or the central dogma of molecular biology? International Journal of Science and Mathematics Education, 14, 445-472. https://doi.org/10.1007/s10763....
 
17.
Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge University Press. https://doi.org/10.1017/CBO978....
 
18.
Jalmo, T., & Suwandi, T. (2018). Biology education students’ mental models on genetic concepts. Journal of Baltic Science Education, 17(3), 474-485. https://doi.org/10.33225/jbse/....
 
19.
Kapteijn, M. (1990). The functions of organisational levels in biology for describing and planning biology education. In P. L. Lijnse, R. Licht, W. de Vos, & A. J. Vaarlo (Eds.), Relating macroscopic phenomena to microscopic particles (pp. 139-150). CD-Press.
 
20.
Knippels, M. C. P. J. (2002). Coping with the abstract and complex nature of genetics in biology education: The yo-yo learning and teaching strategy. CD-Press.
 
21.
Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226. https://doi.org/10.1016/S0959-....
 
22.
Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualisation in science education (pp. 121-145). Springer. https://doi.org/10.1007/1-4020....
 
23.
Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance: Do students see any relationship? International Journal of Science Education, 22(2), 177-195. https://doi.org/10.1080/095006....
 
24.
Lewis, J., Leach, J., & Wood-Robinson, C. (2000a). What’s in a cell? Young people’s understanding of the genetic relationship between cells, within an individual. Journal of Biological Education, 34(3), 129-132. https://doi.org/10.1080/002192....
 
25.
Lewis, J., Leach, J., & Wood-Robinson, C. (2000b). All in the genes? Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74-79. https://doi.org/10.1080/002192....
 
26.
Lewis, J., Leach, J., & Wood-Robinson, C. (2000c). Chromosomes: The missing link. Young people’s understanding of mitosis, meiosis and fertilisation. Journal of Biological Education, 34(3), 189-199. https://doi.org/10.1080/002192....
 
27.
Marbach-Ad, G., & Stavy, R. (2000). Students’ cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200-205. https://doi.org/10.1080/002192....
 
28.
Pande, P., & Chandrasekharan, S. (2017). Representational competence: Towards a distributed and embodied cognition account. Studies in Science Education, 53(1), 1-43. https://doi.org/10.1080/030572....
 
29.
Prain, V. & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751-2773. https://doi.org/10.1080/095006....
 
30.
Rotbain, Y., Stavy, R., & Marbach-Ad, G. (2008). The effect of different molecular models on high school students’ conceptions of molecular genetics. Science Education Review, 7(2), 54-69.
 
31.
Scheid, J., Müller, A., Hettmannsperger, R., & Schnotz, W. (2018). Representational competence in science education: From theory to assessment. In Kristy L. Daniel (Ed.), Towards a framework for representational competence in science education (pp. 263-277). Springer. https://doi.org/10.1007/978-3-....
 
32.
Schonborn, K., & Bogeholz, S. (2013). Experts’ views on translation across multiple external representations in acquiring biological knowledge bout ecology, genetics, and evolution. In D. F. Treagust & C-Y. Tsui (Eds.). Multiple representations in biological education (pp. 147-164). Springer. https://doi.org/10.1007/978-94....
 
33.
Stewart, J., Cartier, J., & Passmore, C. (2005). Developing understanding through model-based inquiry. In M. S. Donovan, y J. D. Bransford (Eds.), How students learn: History, mathematics, and science in the classroom (pp. 515-565). The National Academic Press.
 
34.
Tsui, Chi-Yan., & Treagust, D. F. (2013). Introduction on multiple representations: The importance in biological education. In D. F. Treagust y Chi-Yan, Tsui (Eds), Multiple representations in biological education (pp. 3-18). Springer. https://doi.org/10.1007/978-94....
 
35.
Venville, G., & Treagust, D. F. (1998). Exploring conceptual change using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031-1055. https://doi.org/10.1002/(SICI)...<1031::AID-TEA5>3.0.CO;2-E.
 
36.
Wilson, M. (2005). Constructing measures: An item response modelling approach. Lawrence Erlbaum Associates.
 
37.
Wu, H.-K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in science processes. Journal of Science Education and Technology, 21(6), 754-767. https://doi.org/10.1007/s10956....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top