SPECIAL ISSUE PAPER
Strategic vs Definitory Rules: Their Role in Abductive Argumentation and their Relationship with Deductive Proof
 
More details
Hide details
1
San Jose State University, CA, USA
 
 
Publication date: 2018-06-25
 
 
Corresponding author
Bettina Pedemonte   

San Jose State University, CA, USA
 
 
EURASIA J. Math., Sci Tech. Ed 2018;14(9):em1589
 
KEYWORDS
ABSTRACT
This paper analyzes the role of abduction in proving process when students solve a geometrical problem. Solving a problem is like playing a game in which rules have to be defined. Two kinds of rules are considered: definitory rules that define the basic moves in the game and strategic rules that explain how to play the game. These two rules can be associated to two types of abductions that can be used to solve geometrical problems. The purpose of this paper is to compare these two abductions and to analyze their relationship with the deductive proof. In particular, the study reveals that abduction based on definitory rule can be an obstacle to the construction of the deductive proof, while abduction based on strategic rule seems to not be a challenge for students. In fact, this abduction is usually transformed into a deduction along the argumentation.
REFERENCES (44)
1.
Antonini, S., & Mariotti, M. A. (2003). Abduction and the explanation of anomalies: the case of proof by contradiction In Durand-Guerrier, V., Soury-Lavergne, S., & Arzarello, F. (Ed.), Proceedings of the Sixth Conference of the European Society in Mathematics Education, Lyon, France.
 
2.
Arsac G., Germain, G., & Mante, M. (1991). Problème ouvert et situation-problème. Irem Lyon.
 
3.
Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998a). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.) Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 24-31) Stellenbosch, South Africa.
 
4.
Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998b). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & K. Newstead (Eds.) Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education, (Vol. 2 pp. 32-39) Stellenbosch, South Africa.
 
5.
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp. 216 - 235). London: Hodder & Stoughton.
 
6.
Boero, P., Garuti, R., & Mariotti M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig& A. Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education, (Vol. 2, pp. 121-128), Valencia.
 
7.
Bonfantini, M., & Proni, G. (1983). To guess or not to guess. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce, (pp. 119-134). Bloomington, IN: Indiana University Press.
 
8.
Cifarelli, V., & Sáenz-Ludlow, A. (1996). Abductive processes and mathematics learning. In E. Jakubowski, D. Watkins, & H. Biske (Eds.) Proceedings of the Eighteenth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 161-166). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
 
9.
Eco, U. (1983). Horns, Hooves, Insteps: Some Hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.). The sign of three: Dupin, Holmes, Peirce, (pp. 198-220). Bloomington, IN: Indiana University Press.
 
10.
Eggs, E. (1994) Grammaire du discours argumentatif. Le topique, le générique, le figuré. Ed. Kimé, Paris.
 
11.
Fann, K. T. (1970). Peirce’s theory of abduction. The Hague, Holland: Martinus Nijhoff.
 
12.
Fiallo, J., & Gutierrez, A. (2017). Analysis of the cognitive unity or rupture between conjecture and proof when learning to prove on a grade 10 trigonometry course. Educational Studies in Mathematics, 96(2), 145-167. https://doi.org/10.1007/s10649....
 
13.
Garuti, R., Boero, P., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems: Proceedings of the International Group for the Psychology of Mathematics Education PME-XX, Valencia, vol. 2, 113-120.
 
14.
Garuti, R., Boero, P., & Lemut, E. (1998): Cognitive Unity of Theorems and Difficulty of Proof Proceedings of the International Group for the Psychology of Mathematics Education PME-XXII, Stellenbosch, vol. 2, 345-352.
 
15.
Hintikka, J. (1998). The principle of mathematics revisited, Cambridge University Press.
 
16.
Hintikka, J. (1998). What is abduction? The fundamental problem of contemporary epistemology, Transactions of the Charles S. Peirce Society, 34(3), 503-533.
 
17.
Hintikka, J. (1999). ‘What is Abduction? The fundamental Problem of Contemporary Epistemology’, in Inquiry as Inquiry: A Logic of Scientific Discovery. Jaakko Hintikka Selected Papers, vol. 5, Dordrecht/Boston/London, Kluwer Academic Publishers, pp. 91-113. https://doi.org/10.1007/978-94....
 
18.
Hintikka, J., & Bachman, J. (1991). What If? Toward Excellence in Reasoning. Mayfield, Mountain View, Calif. and London.
 
19.
Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3–21. https://doi.org/10.1007/s10649....
 
20.
Knipping, C. (2003). Argumentation structures in classroom proving situations. In M. A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society in Mathematics Education.
 
21.
Knipping, C. (2008). A method for revealing structures of argumentation in classroom proving processes. ZDM, 40(3), 427-441. https://doi.org/10.1007/s11858....
 
22.
Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures, 229-269. Hillsdale, NJ: Lawrence Erlbaum Associates.
 
23.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60-82. https://doi.org/10.1016/j.jmat....
 
24.
Lavy, I. (2006). A Case Study of Different Types of Arguments Emerging from Explorations in an Interactive Computerized Environment. The Journal of Mathematical Behavior, 25, 153-169. https://doi.org/10.1016/j.jmat....
 
25.
Magnani, L. (2001). Abduction, reason and science: Processes of discovery and explanation. Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-1-....
 
26.
Mason, J. (1996). Abduction at the heart of mathematical being. In E. Gray (Ed.) Thinking about mathematics & Music of the spheres: Papers presented for the inaugural lecture of Professor David Tall. (pp. 34-40). Coventry: Mathematics Education Research Centre.
 
27.
Nardi, E., Biza, I., & Zachariades, T. (2012). “Warrant” revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation. Educational Studies in Mathematics, 79, 157–173. https://doi.org/10.1007/s10649....
 
28.
Paavola, S. (2004). Abduction as a logic and methodology of discovery: The importance of strategies. Found. Sci., 9, 267–283. https://doi.org/10.1023/B:FODA....
 
29.
Park, W. (2017). Magnani’s Manipulative abduction. In Magnani, Bertolotti (Eds.) Springer Handbook of Model-Based Science, Springer (pp. 197-213) https://doi.org/10.1007/978-3-....
 
30.
Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration Recherche en didactique des mathématiques, 25(3), 313-348. http://rdm.penseesauvage.com/Q....
 
31.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23-41. https://doi.org/10.1007/s10649....
 
32.
Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM – The International Journal on Mathematics Education, 40(3), 385-400. https://doi.org/10.1007/s11858....
 
33.
Pedemonte, B., & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model. The Journal of Mathematical Behavior, 41, 104–122. https://doi.org/10.1016/j.jmat....
 
34.
Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes, Educ. Stud. Math. 76, 281–303. https://doi.org/10.1007/s10649....
 
35.
Peirce, C. S. (1867). On the natural classification of arguments. Presented 9 April 1867 to the American Academy of Arts and Sciences. Proceedings of the American Academy of Arts and Sciences 7, 261-287. (Compiled in Peirce, C. S., 1960, 2.461-516).
 
36.
Peirce, C. S. (1960). Collected papers Cambridge, MA: Harvard University Press.
 
37.
Peirce, C. S. (1998). The Essential Peirce. Selected Philosophical Writings, vol. 2 1893-1913, the Peirce Edition Project, ed., Indiana University Press, Bloomington and Indianapolis.
 
38.
Rivera, F. (2017). Abduction and the Emergence of Necessary Mathematical Knowledge, In Magnani, Bertolotti (Eds.) Springer Handbook of Model-Based Science, Springer (pp. 551-567).
 
39.
Rivera, F. D., & Becker, J. R. (2007). Abduction–induction (generalization) processes of elementary majors on figural patterns in algebra. The Journal of Mathematical Behavior, 26(2), 140-155. https://doi.org/10.1016/j.jmat....
 
40.
Toulmin, S. E. (2003). The uses of argument (updated edition of the 1958 book). Cambridge, UK: Cambridge University Press.
 
41.
Weber, K., & Alcock, L. (2005). Using warranted implications to understand and validate proof. For the Learning of Mathematics, 25(1), 34-38.
 
42.
Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171-191. https://doi.org/10.2307/749609.
 
43.
Yackel, E. (2001). Explanation, Justification and argumentation in mathematics classrooms, Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education PME-25, Van den Heuvel-Panhuizen M. (ed.), vol. 4, 33-40, Utrecht.
 
44.
Yackel, E., & Rasmussen, C. (2002). Beliefs and norms in the mathematics classroom. In G. Leder, E. Pehkonen, & G. Toerner (Eds.), Beliefs: A hidden variable in mathematics education? 313-330. Dordrecht, The Netherlands: Kluwer.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top