RESEARCH PAPER
Students’ performance in the scientific skills during secondary education
 
More details
Hide details
1
Department of Didactics of Experimental Sciences, University of Murcia, Murcia, SPAIN
 
 
Publication date: 2022-09-09
 
 
EURASIA J. Math., Sci Tech. Ed 2022;18(10):em2165
 
KEYWORDS
ABSTRACT
One of the goals of secondary science education is to help students develop skills related to scientific inquiry. However, the results of previous studies have shown that students have difficulties in identifying problems, formulating hypotheses, drawing conclusions, and designing experiments. The main objective of this contribution is to indicate the situation in the southeast of Spain in this regard, comparing progress throughout secondary education. Four instruments were designed based on specific problematic situations in biology that were solved by 260 students from three different educational levels (12, 14, and 16 years old). The results show that high school students learn very little in terms of the development of the aforementioned skills and have difficulty understanding their meaning in the science texts used in the classroom. In this paper, some of the reasons that could explain this situation are analyzed and suggestions are made as to how the teaching of the desired skills could be improved.
REFERENCES (40)
1.
Abrahams, I., & Millar, R. (2008). Does practical work really work? A study of the effectiveness of practical work as a teaching and learning method in school science. International Journal of Science Education, 30(14), 1945-1969. https://doi.org/10.1080/095006....
 
2.
Borgerding, L. A., & Raven, S. (2018). Children’s ideas about fossils and foundational concepts related to fossils. Science Education, 102(2), 414-439. https://doi.org/10.1002/sce.21....
 
3.
Charney, J., Hmelo-Silver, C. E., Sofer, W., Neigeborn, L., Coletta, S., & Nemeroff, M. (2007). Cognitive apprenticeship in science through immersionin laboratory practices. International Journal of Science Education, 29(2), 195-213. https://doi.org/10.1080/095006....
 
4.
Cheung, D. (2018). The key factors affecting students’ individual interest in school science lessons. International Journal of Science Education, 40(1), 1-23. https://doi.org/10.1080/095006....
 
5.
Cordón, R. (2009). Enseñanza y aprendizaje de procedimientos científicos (contenidos procedimentales) en la educación secundaria obligatoria: Análisis de la situación, dificultades y perspectivas [Teaching and learning scientific procedures (procedural contents) in compulsory secondary education: Analysis of the situation, difficulties and perspectives] [Doctoral dissertation, University of Murcia].
 
6.
Crujeiras, B., & Jiménez-Aleixandre, M. P. (2017). High school students’ engagement in planning investigations: findings from a longitudinal study in Spain. Chemistry Education Research and Practice, 18(1), 99-112. https://doi.org/10.1039/C6RP00....
 
7.
D’Costa, A., & Schlueter, M. (2013). Scaffolded instruction improves student understanding of the scientific method and experimental design. The American Biology Teacher, 75, 18-28. https://doi.org/10.1525/abt.20....
 
8.
Dauer, J. M., Lute, M., & Straka, O. (2017). Indicators of informal and formal decision-making about a socioscientific issue. International Journal of Education in Mathematics, Science and Technology, 5(2), 124-138. https://doi.org/10.18404/ijems....
 
9.
Dori, Y. J., Avargil, S., Kohen, Z., & Saar, L. (2018). Context-based learning and metacognitive prompts for enhancing scientific text comprehension. International Journal of Science Education, 40(10), 1198-1220. https://doi.org/10.1080/095006....
 
10.
Ferreira, S., & Morais, A. M. (2018). Practical work in science education: Study of different contexts of pedagogic practice. Research in Science Education, 50, 1547-1574. https://doi.org/10.1007/s11165....
 
11.
Ferrés, C. (2017). El reto de plantear preguntas científicas investigables [The challenge of posing researchable scientific questions]. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias [Eureka Magazine on Teaching and Dissemination of Sciences], 14(2), 410-426. https://doi.org/10.25267/rev_e....
 
12.
Ferrés, C., Marbà, A., & Sanmartí, N. (2015). Trabajos de indagación de los alumnos: Instrumentos de evaluación e identificación de dificultades. [Students’ inquiry works: Assessment tools and identification of difficulties]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Teaching and Dissemination of Sciences], 12(1), 22-37. https://doi.org/10.25267/Rev_E....
 
13.
Franco-Mariscal, A. J. (2015). Competencias científicas en la enseñanza y el aprendizaje por investigación. Un estudio de caso sobre corrosión de metales en secundaria [Scientific competences in teaching and learning through research. A case study about the corrosion of metals in secondary education]. Enseñanza de las Ciencias [Science Education], 33(2), 231-252. https://doi.org/10.5565/rev/en....
 
14.
Friedler, Y., & Tamir, P. (1990). Basic concepts in scientific research. Hebrew University.
 
15.
Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi-experimental studies of inquiry-based science teaching: A meta-analysis. Review of Educational Research, 82(3), 300-329. https://doi.org/10.3102/003465....
 
16.
Germann, P. J., & Aram, R. J. (1996). Student performances on the science processes of recording data, analyzing data, drawing conclusions, and providing evidence. Journal of Research in Science Teaching, 33(7), 773-798. https://doi.org/10.1002/(SICI)...<773::AID-TEA5>3.0.CO;2-K.
 
17.
Gomes, A. D. T., Borges, A. T., & Justi, R. (2008). Students’ performance in investigative activity and their understanding of activity aims. International Journal of Science Education, 30(1), 109-135. https://doi.org/10.1080/095006....
 
18.
Grunwald, S., & Hartman, A. (2010). A case-based approach improves science students’ experimental variable identification skills. Journal of College Science Teaching, 39(3), 28-33.
 
19.
Hodson, D. (1994). Hacia un enfoque más crítico del trabajo de laboratorio [Towards a more critical approach to laboratory work]. Enseñanza de las Ciencias [Science Education], 12(3), 299-313. https://doi.org/10.5565/rev/en....
 
20.
Jaber, L. Z, & Hammer, D. (2016). Learning to feel like a scientist. Science Education, 100(2), 189-220. https://doi.org/10.1002/sce.21....
 
21.
Jiménez-Aleixandre, M. P. (1998). Diseño curricular: Indagación y razonamiento con el lenguaje de las ciencias [Curricular design: Inquiry and reasoning with the language of science]. Enseñanza de las Ciencias [Science Education], 16(2), 203-216. https://doi.org/10.5565/rev/en....
 
22.
Kuhn, D., Sin Arvidsson, T., Lesperance, R., & Corprew, R. (2017). Can engaging in science practices promote deep understanding of them? Science Education, 101(2), 232-250. https://doi.org/10.1002/sce.21....
 
23.
Levrini, O., Tasquier, G., Branchetti, L., & Barelli, E. (2019). Developing future-scaffolding skills through science education. International Journal of Science Education, 41(18), 2647-2674. https://doi.org/10.1080/095006....
 
24.
MEFP. (2022). Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria [Ministry of Education and Vocational Training (2022), Royal Decree 217/2022, of March 29, which establishes the organization and minimum teachings of Compulsory Secondary Education]. Boletín Oficial del Estado [State official Newsletter], 76, 41571-41789.
 
25.
Mkimbili, S. T., & Ødegaard, M. (2019). Student motivation in science subjects in Tanzania, including students’ voices. Research in Science Education, 49(6), 1835-1859. https://doi.org/10.1007/s11165....
 
26.
OECD. (2007). PISA 2006. Volume 2: Data /Données. https://doi.org/10.1787/978926....
 
27.
OECD. (2016). PISA 2015. Key results. https://www.oecd.org/pisa/pisa....
 
28.
Oh, P. S. (2010). How can teachers help students formulate scientific hypotheses? Some strategies found in abductive inquiry activities of earth science. International Journal of Science Education, 32(4), 541-560. https://doi.org/10.1080/095006....
 
29.
Oliveras, B., Márquez, C., & Sanmartí, N. (2013). The use of newspaper articles as a tool to develop critical thinking in science classes. International Journal of Science Education, 35(6), 885-905. https://doi.org/10.1080/095006....
 
30.
Rönnebeck, S., Bernholt, S., & Ropohl M. (2016). Searching for a common ground–A literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161-197. https://doi.org/10.1080/030572....
 
31.
Sheldrake, R. (2018). Changes in children’s science-related career aspirations from age 11 to age 14. Research in Science Education, 50, 1435-1464. https://doi.org/10.1007/s11165....
 
32.
Spektor-Levy, O., Bat-Sheva, E., & Scherz, Z., (2009). Teaching scientific communication skills in science studies: Does it make a difference? International Journal of Science and Mathematics Education, 7(5), 875-903. https://doi.org/10.1007/s10763....
 
33.
Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1-34. https://doi.org/10.1080/030572....
 
34.
Toh, K. A., & Woolnough, B. E. (1993). Middle school student’s achievement in laboratory investigations: explicit versus tacit knowledge. Journal of Research in Science Teaching, 30(5), 445-457. https://doi.org/10.1002/tea.36....
 
35.
Vorholzer, A., von Aufschnaiter, C., & Boone, W. J. (2020). Fostering upper secondary students’ ability to engage in practices of scientific investigation: A comparative analysis of an explicit and an implicit instructional approach. Research in Science Education, 50(1), 333-359. https://doi.org/10.1007/s11165....
 
36.
Vossen, T. E., Henze, I., Rippe, R. C. A., Van Driel, J. H., & De Vries, M. J. (2018). Attitudes of secondary school students towards doing research and design activities. International Journal of Science Education, 40(13), 1629-1652. https://doi.org/10.1080/095006....
 
37.
Wei, C. A., Burnside, W. R., & Che-Castaldo, J. P. (2015). Teaching socio-environmental synthesis with the case studies approach. Journal of Environmental Studies and Sciences, 5(1), 42-49. https://doi.org/10.1007/s13412....
 
38.
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20....
 
39.
Zohar, A. (1998). Result or conclusion? Student’s differentiation between experimental results and conclusions. Journal of Biological Education, 32(1), 53-59. https://doi.org/10.1080/002192....
 
40.
Zowada, C., Frerichs, N., Zuin, V. G., & Eilks, I. (2020). Developing a lesson plan on conventional and green pesticides in chemistry education-a project of participatory action research. Chemistry Education Research and Practice, 21(1), 141-153. https://doi.org/10.1039/C9RP00....
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top