RESEARCH PAPER
The Design of a Teaching-Learning Sequence on Simple Machines in Elementary Education and its Benefit on Creativity and Self-Regulation
 
More details
Hide details
1
Department of Physics and Mathematics, Faculty of Education, University of Alcalá, SPAIN
 
2
Department of Geology, Geography and Environment, Faculty of Education, University of Alcalá, SPAIN
 
 
Publication date: 2022-01-03
 
 
EURASIA J. Math., Sci Tech. Ed 2022;18(1):em2066
 
KEYWORDS
ABSTRACT
In this study, the process of design, implementation, evaluation, and redesign of a Teaching-Learning Sequence (TLS) on simple machines for students of 9-12 years old is shown according to the principles of Design Based Research. The aim is to create a TLS that satisfactorily addresses the conceptual difficulties inherent to the object of study and that succeeds in fostering self-regulation skills and creativity. Both qualitative (focus group, semi-structured interviews, students’ reports, and teacher’s class notes) and quantitative instruments (a validated questionnaire and an ad hoc one with content validation by experts) are used. The statistical analysis of the questionnaires and the narrative analysis of the qualitative instruments have been triangulated. The results show that students manage to address the conceptual and procedural difficulties of the object of study while developing emotional (enjoyment and self-efficacy) and cognitive (metacognition) self-regulation skills, as well as creativity related to the scientific and artisan domains.
REFERENCES (60)
1.
Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. Routledge. https://doi.org/10.4324/978042....
 
2.
American Institute of Physics (2020). Children’s misconceptions about science. “Operation physics”, elementary-middle school physics education project. http://www.eskimo.com/~billb/m....
 
3.
Andersson, B., & Bach, F. (2005). On designing and evaluating teaching sequences taking geometrical optics as an example. Science Education, 89(2), 196-218. https://doi.org/10.1002/sce.20....
 
4.
Aranzabal, J. G., Ametller, J., & Elosegi, K. Z. (2021). Investigación basada en el diseño de secuencias de enseñanza-aprendizaje: Una línea de investigación emergente en enseñanza de las ciencias [Research based on the design of teaching-learning sequences: An emerging line of research in science teaching]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Science Teaching and Dissemination], 18(1), 1801-1801. https://doi.org/10.25267/Rev_E....
 
5.
Bransford, J., Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. National Academies Press.
 
6.
Bruner, J. S. (1966). Toward a theory of instruction. MA: Harvard University Press.
 
7.
Burnard, P. (2012). Musical creativities in practice. Oxford: Oxford University Press. https://doi.org/10.1093/acprof....
 
8.
Buty, C., Tiberghien, A., & Le Maréchal, J. F. (2004). Learning hypotheses and associated tools to design and to analyse teaching-learning sequences. International Journal of Science Education, 26, 579-604. https://doi.org/10.1080/095006....
 
9.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. https://media.bscs.org/bscsmw/....
 
10.
Castilla-La Mancha, Consejería de Educación, Cultura y Deportes (2020). Decreto 54/2014 of the 10th of June of 2014 [2014/9028]. Diario Oficial de Castilla-La Mancha, Año XXXIII Núm. 132, 11/07/2014, pp. 18498-18909 [Castilla-La Mancha, Ministry of Education, Culture and Sports (2020). Decree 54/2014 of the 10th of June of 2014 [2014/9028]. Official Gazette of Castilla-La Mancha, Year XXXIII No. 132, 07/11/2014, pp. 18498-18909]. https://www.educa.jccm.es/es/n....
 
11.
Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In Proceedings of the international symposium on selected domains of research and development in mathematics education (pp. 51-62). Bratislava, Czechoslovakia: Comenius University.
 
12.
Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students’ study and use examples in learning to solve problems. Cognitive Science, 13(2), 145-182. https://doi.org/10.1016/0364-0....
 
13.
Cobb, P., & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. In A. E. Kelly, R. A. Lesh, & J. A. Baek (Eds.), Handbook of design research methods in education (pp. 68-95). Routledge.
 
14.
Conradty, C., Sotiriou, S. A., Bogner, F. X. (2020). How creativity in STEAM modules intervenes with self-efficacy and motivation. Education Sciences, 10(3), 70. https://doi.org/10.3390/educsc....
 
15.
Craft, A. (2001). Little c creativity. In A. Craft, B. Jeffrey, & M. Liebling (Eds.). Creativity in education (pp. 45-61). Continuum.
 
16.
Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. SAGE.
 
17.
Design Based Research Collective (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. https://doi.org/10.3102/001318....
 
18.
Driver, R. (1985). Children’s ideas in science. McGraw-Hill Education (UK).
 
19.
Duit, R. (2006). Science education research–An indispensable prerequisite for improving instructional practice. ESERA Summer School, Braga, 1-18.
 
20.
Edelson, D. C. (2001). Learning‐for‐use: A framework for the design of technology‐supported inquiry activities. Journal of Research in Science teaching, 38(3), 355-385. https://doi.org/10.1002/1098-2...<355::AID-TEA1010>3.0.CO;2-M.
 
21.
Elliott, J. (2009). Building educational theory through action research. In S. E. Noffke, & B. Somekh (Eds.), The SAGE handbook of educational action research (pp. 28-38). SAGE.
 
22.
Escobar-Pérez, J., & Cuervo-Martínez, Á. (2008). Validez de contenido y juicio de expertos: Una aproximación a su utilización [Content validity and expert judgment: An approach to its use]. Avances en Medición [Advances in Measurement], 6(1), 27-36. https://www.academia.edu/downl....
 
23.
García-Carmona, A., & Criado, A. M. (2013). Enseñanza de la energía en la etapa 6-12 años: Un planteamiento desde el ámbito curricular de las máquinas [Teaching energy in the 6-12 year stage: An approach from the curricular field of machines]. Enseñanza de las Ciencias [Science Teaching], 31(3), 87-102. https://doi.org/10.5565/rev/ec....
 
24.
García-Legaz, A. M. C., & García-Carmona, A. (2011). Investigando las máquinas y artefactos [Investigating the machines and artifacts]. Díada Editora.
 
25.
Glaveanu, V. P. (2018). Educating which creativity? Thinking Skills and Creativity, 27, 25-32. https://doi.org/10.1016/j.tsc.....
 
26.
Glaveanu, V. P., & Beghetto, R. A. (2021). Creative experience: A non-standard definition of creativity. Creativity Research Journal, 33(2), 75-80. https://doi.org/10.1080/104004....
 
27.
Gomes, C. M. A., Golino, H. F., & Menezes, I. G. (2014). Predicting school achievement rather than intelligence: Does metacognition matter? Psychology, 5(09), 1095-1110. https://doi.org/10.4236/psych.....
 
28.
Gordon, J., Halász, G., Krawczyk, M., Leney, T., Michel, A., Pepper, D., Putkiewicz, E., & Wiśniewski, J. (2009). Key competences in Europe: Opening doors for lifelong learners across the school curriculum and teacher education. CASE Network Reports, (87). https://doi.org/10.2139/ssrn.1....
 
29.
Hattie, J., & Yates, G. C. (2013). Visible learning and the science of how we learn. Routledge. https://doi.org/10.4324/978131....
 
30.
Jiménez, J. R. (2006). Proyecto curricular INM (6-12): Un aula para la investigación [Curricular project INM (6-12): A classroom for research]. Sevilla, Díada.
 
31.
Kortland K., & Klaassen K. (2010). Designing theory-based teaching-learning sequences for science education. FSME, Utrecht.
 
32.
Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning‐goals‐driven design model: Developing curriculum materials that align with national standards and incorporate project‐based pedagogy. Science Education, 92(1), 1-32. https://doi.org/10.1002/sce.20....
 
33.
Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115-142. https://doi.org/10.1080/030572....
 
34.
Leach, J., Ametller, J., & Scott, P. (2009). The relationship of theory and practice in designing, implementing and evaluating teaching sequences: Learning from examples that don’t work. Éducation et Didactique [Education and Didactics], (3-2), 133-155. https://doi.org/10.4000/educat....
 
35.
Levy, P. (2017). Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. The Guilford Press.
 
36.
Lherer, R., & Schaule, L. (1998). Reasoning about structure and function: Children’s conceptions of gears. Journal of Research in Science Teaching, 35(1), 3-25. https://doi.org/10.1002/(SICI)...<3::AID-TEA2>3.0.CO;2-X.
 
37.
Lijnse, P. L. (1995). “Developmental research” as a way to an empirically based “didactical structure” of science. Science Education, 79(2), 189-199. https://doi.org/10.1002/sce.37....
 
38.
Loewenthal, K., & Lewis, C. A. (2018). An introduction to psychological tests and scales (2nd Ed.). Psychology Press. https://doi.org/10.4324/978131....
 
39.
Lubart, T., & Thornhill-Miller, B. (2019). Creativity: An overview of the 7C’s of creative thought. Psychology of Human Thought, 279-306.
 
40.
Martín, H. R. (2020). ¿Cómo aprendemos?: Una aproximación científica al aprendizaje y la enseñanza [How do we learn?: A scientific approach to learning and teaching]. Graó.
 
41.
McClelland, M. M., & Cameron, C. E. (2011). Self-regulation and academic achievement in elementary school children. New Directions for Child and Adolescent Development, 2011, 29-44. https://doi.org/10.1002/cd.302.
 
42.
Méheut, M., & Psillos, D. (2004). Teaching–learning sequences. Aims and tools for science education. International Journal of Science Education, 26(5), 515–535. https://doi.org/10.1080/095006....
 
43.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
 
44.
Norbury, J. W. (2006). Working with simple machines. Physics Education, 41(6), 546-550. https://doi.org/10.1088/0031-9....
 
45.
Pérez, S., & Villagrá, J. Á. M. (2020). La competencia científica en las actividades de aprendizaje incluidas en los libros de texto de ciencias de la naturaleza [Scientific competence in the learning activities included in natural sciences textbooks]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias [Eureka Magazine on Science Teaching and Dissemination]. https://doi.org/10.25267/Rev_E....
 
46.
Plomp, T., & Nieveen, N. (2007). An introduction to educational design research. In Proceedings of the seminar conducted at the East China Normal University, Shanghai (PR China) (Vol. 23).
 
47.
Polya, G. (2004). How to solve it: A new aspect of mathematical method. Princeton University Press.
 
48.
Psillos, D., & Kariotoglou, P. (2015). Iterative design of teaching-learning sequences: introducing the science of materials in European schools. Springer. https://doi.org/10.1007/978-94....
 
49.
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Austria. https://www.Rproject.org/.
 
50.
Ramírez, M. C., & Cepena, M. C. M. (2012). Perfeccionamiento de un instrumento para la selección de expertos en las investigaciones educativas [Improvement of an instrument for the selection of experts in educational research]. Revista Electrónica de Investigación Educativa [Electronic Journal of Educational Research], 14(2), 167-179. https://www.redalyc.org/articu....
 
51.
Sangoseni, O., Hellman, M., & Hill, C. (2013). Development and validation of a questionnaire to assess the effect of online learning on behaviors, attitudes, and clinical practices of physical therapists in the United States regarding evidenced-based clinical practice. Internet Journal of Allied Health Sciences and Practice, 11(2), 7. https://doi.org/10.46743/1540-....
 
52.
Sanmartí, N. (2002). Didáctica de las ciencias en la educación secundaria obligatoria [Science didactics in compulsory secondary education]. Síntesis S. A.
 
53.
Schunk, D. H. (1989). Self-efficacy and achievement behaviors. Educational Psychology Review, 1(3), 173-208. https://doi.org/10.1007/BF0132....
 
54.
Shayer, M., & Adey, P. (1981). Towards a science of science teaching: Cognitive development and curriculum demand. Heinemann Educational Publishers.
 
55.
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. Zentralblatt für Didaktik der Mathematik, 29, 75-80. https://doi.org/10.1007/s11858....
 
56.
Sinha, T., & Kapur, M. (2021). When problem solving followed by instruction works: Evidence for productive failure. Review of Educational Research, 91(5), 761-798. https://doi.org/10.3102/003465....
 
57.
Sternberg, R. J. (2005). Creativity or creativities? International Journal of Human Computer Studies, 63, 370-382. https://doi.org/10.1016/j.ijhc....
 
58.
Sternberg, R. J., & Lubart. T. I. (1993). Creative giftendness: A multivariate Investment approach. Gifted Child Quarterly, 37(1), 7-15. https://doi.org/10.1177/001698....
 
59.
Toma, R. B., & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383-1395. https://doi.org/10.29333/ejmst....
 
60.
Tyler-Wood, T., Knezek, G., & Christensen, R. (2010). Instruments for assessing interest in STEM content and careers. Journal of Technology and Teacher Education, 18(2), 345-368.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top