RESEARCH PAPER
The Developmental Changes of Number Processing and Calculation Abilities in Chinese Primary School Students
,
 
Fei Li 1
,
 
,
 
,
 
Hui Zhao 4,5
 
 
 
More details
Hide details
1
Faculty of Education, Beijing Normal University, Beijing, CHINA
 
2
Department of Psychology, BeiHang University, Beijing, CHINA
 
3
Beijing Jianxiang School, Beijing, CHINA
 
4
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGoven Institute for Brain Research, Beijing Normal University, CHINA
 
5
Siegler Center for Innovations in Learning, Beijing Normal University, 100875, CHINA
 
 
Online publication date: 2018-04-26
 
 
Publication date: 2018-04-26
 
 
EURASIA J. Math., Sci Tech. Ed 2018;14(7):2745-2756
 
KEYWORDS
ABSTRACT
Based on the ‘triple-code’ theory, the present study provided a comprehensive examination of the development of number processing and calculation abilities of Chinese primary school students. 310 children from grade 1 to grade 4 were assessed using the battery of number processing and calculation tests (NUCALC-R (Protocol)), covering tests of the Verbal, Visual Arabic and Analogue Magnitude Modules of the numerical abilities. The results showed that the three modules had different developmental trajectories from grade 1 to grade 4: the Verbal Module and Analog Module reached a plateau in grade 3, but the Visual Arabic Module improved gradually across the four grades. In addition, the subtests within each module also showed different developmental trajectories, demonstrating a rich profile of how the specific ways of representing and manipulating the numerals in a given module develop in the early school years.
REFERENCES (56)
1.
Abbound, S., Maidenbaum, S., Dehaene, S., & Amedi, A. (2015). A number-form area in the blind. Nature Communication, 6, 6026. https://doi.org/10.1038/ncomms....
 
2.
Artemenko, C., Moeller, K., Huber, S., & Klein, E. (2015). Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition. Frontiers in Human Neuroscience, 9, 1-8. https://doi.org/10.3389/fnhum.....
 
3.
Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189-201. https://doi.org/10.1037/0012-1....
 
4.
Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016-1031. https://doi.org/10.1111/j.1467....
 
5.
Campbell, J., & Clark, J. (1988). An encoding-complex view of cognitive number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal of Experimental Psychology: General, 117(2), 204-214. https://doi.org/10.1037/0096-3....
 
6.
Campbell, J., & Epp, L.J. (2004). An Encoding-Complex Approach to Numerical Cognition in Chinese-English Bilinguals. Canadian Journal of Experimental Psychology, 58:4, 229-244. https://doi.org/10.1037/h00874....
 
7.
Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), 844-854. https://doi.org/10.1371/journa....
 
8.
Cohen, L., & Dehaene, S. (2000). Calculating without reading: unsuspected residual abilities in pure alexia. Cogntive Neuropsycholgy 17(6), 563-583. https://doi.org/10.1080/026432....
 
9.
Dehaene, S. (1992). Varieties of numberical abilities. Cognition, 44, 1-42. https://doi.org/10.1016/0010-0....
 
10.
Dehaene, S. (2011). The number sense: how the mind creates mathematics: Oxford University Press.
 
11.
Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 33(2), 219–250. https://doi.org/10.1016/S0010-....
 
12.
Dehaene, S., Bossini, S., & Giraux, P. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. https://doi.org/10.1037/0096-3....
 
13.
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506. https://doi.org/10.1080/026432....
 
14.
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 284(5416), 970-974. https://doi.org/10.1111/j.1467....
 
15.
Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33(4), 697-710. https://doi.org/10.1016/S0010-....
 
16.
Dellatolas, G., von Aster, M., Willadino-Braga, L., Meier, M., & Deloche, G. (2000). Number processing and mental calculation in school children aged 7 to 10 years: a transcultural comparison. European Child and Adolescent Psychiatry, 9 Suppl 2, II102-110. https://doi.org/10.1007/s00787....
 
17.
Fosco, W. D., & Hawk, L. W. (2017). Relating lab to life: Decrements in attention over time predict math productivity among children with ADHD. Child Neuropsychology, 23(2), 148-158. https://doi.org/10.1080/092970....
 
18.
Fry, A. E., & Hale, S. (1996). Processing speed, working memory, and fluid intelligence: Evidence for a developmental cascade. Psychological Science, 7, 237–241. https://doi.org/10.1111/j.1467....
 
19.
Fuson, K. C., Richards, J., & Briards, D. J. (1982). The Acquisition of the Number Word Sequence. In C. J. Brainerd (Hrsg.), Children's Logical and Mathematical Cognition. Progress in Cognitive Development Research (S. 33–92). New York: Springer.
 
20.
Holloway, I., & Ansari, D. (2008). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29. https://doi.org/10.1016/j.jecp....
 
21.
Holton, D., & Clarke, D. (2006). Scaffolding and metacognition. International Journal of Mathematical Education in Science & Technology, 37(2), 127-143. https://doi.org/10.1080/002073....
 
22.
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448. https://doi.org/10.1038/nrn168....
 
23.
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382-10385. https://doi.org/10.1073/pnas.0....
 
24.
Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763-787. https://doi.org/10.1080/875656....
 
25.
Klein, E., Bahnmueller, J., Mann, A., Pixner, S., Kaufmann, L., Nuerk, H. C., & Moeller, K. (2013). Language influences on numerical development-inversion effects on multi-digit number processing. Frontiers in Psychology, 4(8), 1-6. https://doi.org/10.3389/fpsyg.....
 
26.
Klein, E., Mann, A., Huber, S., Bloechle, J., Willmes, K., Karim, A. A., … Moeller, K. (2013). Bilateral Bi-Cephalic Tdcs with Two Active Electrodes of the Same Polarity Modulates Bilateral Cognitive Processes Differentially. Plos One, 8 (8), e71607. https://doi.org/10.1371/journa....
 
27.
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324(5934), 1583-1585. https://doi.org/10.1126/scienc....
 
28.
Koumoula, A., Tsironi, V., Stamouli, V., Bardani, I., Siapati, S., Annika, G., ... von Aster, M. (2004). An epidemiological study of number processing and mental calculation in Greek schoolchildren. Journal of Learning Disabilities, 37(5), 377-388. https://doi.org/10.1177/002221....
 
29.
Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: a FMRI study. Developmental Neuropsychology, 33(4), 447-473. https://doi.org/10.1080/875656....
 
30.
Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41, 1942–1958. https://doi.org/10.1016/S0028-....
 
31.
Libertus, M., Woldorff, M. G, & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3, Article 1. https://doi.org/10.1186/1744-9....
 
32.
Mann, A., Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2012). On the development of Arabic three-digit number processing in primary school children. Journal of Experimental Child Psychology, 113(4), 594-601. https://doi.org/10.1016/j.jecp....
 
33.
Maruyama, M., Pallier, C., Jobert, A., Sigman, M., & Dehaene, S. (2012). The cortical representation of simple mathematical expressions. NeuroImage, 61(4), 1444-1460. https://doi.org/10.1016/j.neur....
 
34.
McCloskey, M. (1992). Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 44(1-2), 107-157. https://doi.org/10.1016/0010-0....
 
35.
McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: evidence from dyscalculia. Brain and Cog., 4(2), 171-196. https://doi.org/10.1016/0278-2....
 
36.
McCrink, K., & Wynn, K. (2004). Large-number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776-781. https://doi.org/10.1111/j.0956....
 
37.
Miller, K. F., & Paredes, D. R. (1990). Starting to add worse: effects of learning to multiply on children’s addition. Cognition, 37(3), 213-242. https://doi.org/10.1016/0010-0....
 
38.
Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H.-C. (2011). Early place-value understanding as a precursor for later arithmetic performance. A longitudinal study on numerical development. Research in Developmental Disabilities, 32, 1837–1851. https://doi.org/10.1016/j.ridd....
 
39.
Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., Le Bihan, D., ... Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40(4), 847-858. https://doi.org/10.1016/S0896-....
 
40.
Noel, M.-P., & Seron, X. (1993). Arabic number reading deficit: A single case study or when 236 is read (2306) and judged superior to 1258. Cognitive Neuropsychology, 10(4), 317-339. https://doi.org/10.1080/026432....
 
41.
Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82, B25–B33. https://doi.org/10.1016/S0010-....
 
42.
Peake, C., Jimenez, J. E., & Rodrigues, C. (2017). Data-driven heterogeneity in mathematical learning disabilities based on the triple code model. Research in Developmental Disabilities, 71, 130-142. http://doi.org/10.1016/j.ridd.....
 
43.
Pinel, P., & Dehaene, S. (2013). Genetic and environmental contributions to brain activation during calculation. NeuroImage, 81, 306-316. https://doi.org/10.1016/j.neur....
 
44.
Santos, F. H. D., Da Silva, P. A., Ribeiro, F. S., Dias, A. L. R. P., Frigério, M. C., Dellatolas, G., & von Aster, M. (2013). Number processing and calculation in Brazilian children aged 7-12 years. The Spanish Journal of Psychology, 15(2), 513-525. https://doi.org/10.5209/rev_SJ....
 
45.
Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group Independent Component Analysis of the mental addition and subtraction of fractions. NeuroImage, 22(3), 1414-1420. https://doi.org/10.1016/j.neur....
 
46.
Shimi, A., Nobre, A. C., Astle, D., & Scerif, G. (2014). Orienting Attention within Visual Short-Term Memory: Development and Mechanisms. Child development, 85(2), 578-592. https://doi.org/10.1111/cdev.1....
 
47.
Shum, J., Hermes, D., Foster, B. L., Dastjerdi, M., Rangarajan, V., Winawer, J., … Parvizi, J. (2013). A brain area for visual numerals. J. Neurosci. 33, 6709-6715. https://doi.org/10.1523/JNEURO....
 
48.
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. https://doi.org/10.1111/j.1467....
 
49.
Siemann, J., & Petermann, F. (2017). Evaluation of the Triple Code Model of numerical processing—Reviewing past neuroimaging and clinical findings. Research in Developmental Disabilities, 72, 106-117. https://doi.org/10.1016/j.ridd....
 
50.
von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and calculation: varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9 Suppl 2, II41-57. https://doi.org/10.1007/s00787....
 
51.
von Aster, M., & Shalev, R. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868-873. https://doi.org/10.1111/j.1469....
 
52.
von Aster, M., & Weinhold, M. (2002). The neuropsychological test battery for number processing and calculation in children (NUCALC-R) PROTOCOL. Männedorf.
 
53.
Vygotsky, L. S. (1986). In Thought and Language (Kozulin, A., ed.), MIT Press.
 
54.
Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220-251. https://doi.org/10.1016/0010-0....
 
55.
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11. https://doi.org/10.1016/S0010-....
 
56.
Zhang, S., & Dong, Q. (2006). Revision of test of number processing and calculation and study on its reliability and validity. Chinese Journal of Special Education, 71(5), 62-66.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top