RESEARCH PAPER
The effect of calculus and kinematics contexts on students’ understanding of graphs
,
 
,
 
 
 
More details
Hide details
1
School of Humanities and Education, Tecnologico de Monterrey, Monterrey, MEXICO
 
2
Institute for the Future of Education, Tecnologico de Monterrey, Monterrey, MEXICO
 
3
School of Engineering, Universidad Andres Bello, Santiago, CHILE
 
 
Publication date: 2024-11-06
 
 
EURASIA J. Math., Sci Tech. Ed 2024;20(11):em2533
 
KEYWORDS
ABSTRACT
In this study, we compare students’ understanding of the derivative as slope and the antiderivative as the area under the curve using isomorphic graph-based problems in both calculus and kinematics contexts. Drawing from previous research, we designed two isomorphic tests, each with 12 items, and administered them to 543 university students. Our findings show that students performed significantly better on the kinematics test, with a higher rate of correct answers in some items. We also identified the most frequent errors and general trends in students’ selection of incorrect answers across both contexts. Based on these results, we provide specific recommendations for improving the instruction of these concepts. The analyses, recommendations, and tests included in the study can serve as valuable resources for mathematics and science education researchers and instructors teaching these topics. This study offers insights into how context influences students’ conceptual understanding, with implications for enhancing calculus and physics education.
REFERENCES (28)
1.
Bajracharya, R. R., Wemyss, T. M., & Thompson, J. R. (2012). Student interpretation of the signs of definite integrals using graphical representations. AIP Conference Proceedings, 1413(1), 111-114. https://doi.org/10.1063/1.3680....
 
2.
Ballesteros, V., Lozano, S., & Rodríguez, Ó. (2020). Noción de aproximación del área bajo la curva utilizando la aplicación calculadora gráfica de GeoGebra [Notion of approximation of the area under the curve using the GeoGebra graphic calculator application]. Praxis & Saber, 11(26), Article e-9989. https://doi.org/10.19053/22160....
 
3.
Beichner, R. (1994). Testing student interpretation of kinematic graphs. American Journal of Physics, 62(8), 750-762. https://doi.org/10.1119/1.1744....
 
4.
Carli, M., Lippiello, S., Pantano, O., Perona, M., & Tormen, G. (2020). Testing students ability to use derivatives, integrals, and vectors in a purely mathematical context and in a physical context. Physical Review Physics Education Research, 16, Article 010111. https://doi.org/10.1103/PhysRe....
 
5.
Christensen, W. M. and Thompson, J. R. (2012). Investigating graphical representations of slope and derivative without a physics context. Physical Review Physics Education Research, 8, Article 023101. https://doi.org/10.1103/PhysRe....
 
6.
Ding, L., Chabay, R., Sherwood, B., & Beichner R. (2006). Evaluating an electricity and magnetism assessment tool: Brief electricity and magnetism assessment. Physical Review Physics Education Research, 2, Article 010105. https://doi.org/10.1103/PhysRe....
 
7.
Dominguez, A., Barniol, P. & Zavala, G. (2017). Test of understanding graphs in calculus: Test of students' interpretation of calculus graphs, EURASIA Journal of Mathematics, Science and Technology Education, 13(10), 6507-6531. https://doi.org/10.12973/ejmst....
 
8.
Field, A. (2013). Discovering statistics using IBM SPPS statistics (4th ed.). SAGE.
 
9.
Hadjidemetriou, C., & Williams, J. (2002). Children’s graphical conceptions. Research in Mathematics Education, 4(1), 69-87. https://doi.org/10.1080/147948....
 
10.
Ivanjek, L., Susac, A., Planinic, M., Andrasevic, A., & Milin-Sipus, Z. (2016). Student reasoning about graphs in different contexts. Physical Review Physics Education Research, 12, Article 010106. https://doi.org/10.1103/PhysRe....
 
11.
Jones, S. R. (2015). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics and applied science contexts. The Journal of Mathematical Behavior, 38, 9-28. https://doi.org/10.1016/j.jmat....
 
12.
Kusairi, S., Puspita, D. A., Suryadi, A., & Suwono, H. (2020). Physics formative feedback game: Utilization of isomorphic multiple-choice items to help students learn kinematics. TEM Journal, 9(4), 1625-1632. https://doi.org/10.18421/TEM94....
 
13.
Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, Graphs, and Graphing: Tasks, Learning, and Teaching. Review of Educational Research, 60(1), 1-64. https://doi.org/10.3102/003465....
 
14.
Martínez-Miraval, M.y A., & García-Cuéllar, D. J. (2020). Study of the apprehensions in the graphic register and instrumental genesis of the definite integral. Formación Universitaria, 13(5), 177-190. https://doi.org/10.4067/S0718-....
 
15.
McDermott, L. C., Rosenquist, M. L. & van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55, 503-513. https://doi.org/10.1119/1.1510....
 
16.
Meltzer, D. E. (2004). Investigation of students’ reasoning regarding heat, work, and the first law of thermodynamics in an introductory calculus-based general physics course. American Journal of Physics, 72(11), 1432-1446. https://doi.org/10.1119/1.1789....
 
17.
Nguyen, D. & Rebello, N. S. (2011). Students’ understanding and application of the area under the curve concept in physics problems. Physical Review Physics Education Research, 7, Article 010112. https://doi.org/10.1103/PhysRe....
 
18.
Nordstokke, D. W., & Zumbo, B. D. (2010). A new nonparametric Levene test for equal variances. Psicológica, 31(2), 401-430.
 
19.
Nordstokke, D. W., Zumbo, B.D., Cairns, S. L., Saklofske, D. H. (2011). The operating characteristics of the nonparametric Levene test for equal variances with assessment and evaluation data. Practical Assessment, Research & Evaluation, 16(5), Article 5. https://doi.org/10.7275/5t99-z....
 
20.
Orton, A. (1983). Students’ understanding of integration. Educational Studies in Mathematics, 14, 1-18. https://doi.org/10.1007/BF0070....
 
21.
Perez-Goytia, N., Dominguez, A., & Zavala, G. (2010). Understanding and interpreting calculus graphs: Refining an instrument. AIP Conference Proceedings, 1289, 249-252. https://doi.org/10.1063/1.3515....
 
22.
Planinic, M., Ivanjek, L., Susac, A. & Milin-Sipus, Z. (2013). Comparison of university students’ understanding of graphs in different contexts. Physical Review Physics Education Research, 9, Article 020103. https://doi.org/10.1103/PhysRe....
 
23.
Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414. https://doi.org/10.1007/s10763....
 
24.
Sheskin, D. J. (2007). Handbook of parametric and nonparametric statistical procedures (4th ed.). Chapman and Hall/CRC.
 
25.
Susac, A., Bubic, A., Kazotti, E., Planinic, M., & Palmovic, M. (2018). Student understanding of graph slope and area under a graph: A comparison of physics and nonphysics students. Physical Review Physics Education Research, 14, Article 020109. https://doi.org/10.1103/PhysRe....
 
26.
Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. P. Carlson, & C. Rasnussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics (pp. 43-52). Mathematical Association of America. https://doi.org/10.5948/UPO978....
 
27.
Woolnough, J. (2000). How do students learn to apply their mathematical knowledge to interpret graphs in physics? Research in Science Education, 30, 259-267. https://doi.org/10.1007/BF0246....
 
28.
Zavala, G., Tejeda, S., Barniol, P., & Beichner, R. (2017). Modifying the test of understanding graphs in kinematics. Physical Review Physics Education Research, 13, Article 020111.
 
eISSN:1305-8223
ISSN:1305-8215
Journals System - logo
Scroll to top